Alzheimer's disease (AD) is one of the most common neurodegenerative diseases leading to dementia. Although cytotoxicity of amyloid β peptides has been intensively studied within pathophysiology of AD, the physiological function of amyloid precursor protein (APP) still remains unclarified. We have shown previously that secreted APPα (sAPPα) is associated with glial differentiation of neural stem cells. To elucidate specific mechanisms underlying sAPPα-induced gliogenesis, we examined the potential involvement of bone morphogenic proteins (BMPs). BMPs are one of the factors involved in glial differentiation of neural progenitor cells. When expressions of BMP-2, -4, and -7 were examined, upregulation of BMP-4 expression was solely observed as a result of treatment with sAPPα in a time and dose-dependent manner. Furthermore, the treatment of sAPPα promoted phosphorylation of Smad1/5/8, a downstream signaling mediator of BMP receptors. Interestingly, N-terminal domain of APP (1-205) was sufficient to elevate BMP4 expression, resulting in an increase of glial fibrillary acidic protein (GFAP) expression and phosphorylation of Smad1/5/8. However, the application of APP neutralizing antibody and anti-BMP4 antibody significantly suppressed expression of BMP-4 as well as phosphorylation of Smad1/5/8. Thus, our results indicate that sAPPα-induced gliogenesis is in part mediated by the BMP-4 signaling pathway. We also observed upregulation of BMP-4 and phosphorylation of Smad1/5/8 in APP transgenic mice. It is imperative to unravel the mechanisms underlying the role of BMP-4 during APPα-induced glial differentiation in hope of providing novel prevention or treatment for AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2014.03.139 | DOI Listing |
World J Surg Oncol
January 2025
Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Tongfu Roud 396, Guangzhou, 510220, Guangdong, China.
Schwannomas are tumors that originate from the glial cells of the nervous system and can occur on myelinated nerve fibers throughout the body, especially in the craniofacial region. However, pancreatic schwannomas are extremely rare. We report a case of a pancreatic schwannoma that was difficult to differentiate from other pancreatic tumors preoperatively.
View Article and Find Full Text PDFBMC Neurol
January 2025
Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, China.
Background: Awareness of the characteristics of glial fibrillary acidic protein autoantibody (GFAP-IgG) associated myelitis facilitates early diagnosis and treatment. We explored features in GFAP-IgG myelitis and compared them with those in myelitis associated with aquaporin-4 IgG (AQP4-IgG) and myelin oligodendrocyte glycoprotein IgG (MOG-IgG).
Methods: We retrospectively reviewed data from patients with GFAP-IgG myelitis at the First Affiliated Hospital of Zhengzhou University and Henan Children's Hospital from May 2018 to May 2023.
Neuromolecular Med
December 2024
Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, 410012, China.
Alzheimer's disease (AD) is the most common neurodegenerative disorder. The neuropathology of AD appears in the hippocampus. The purpose of this work was to reveal key differentially expressed genes (DEGs) in the hippocampus of AD patients and healthy individuals.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
Background: Progressive supranuclear palsy (PSP) is a neurodegenerative disorder involving pathological deposition of tau that includes glial inclusions and specific regional vulnerability patterns. Therapeutic developments are hampered by incomplete understanding of disease mechanisms. Few studies have examined its cell type-specific effects.
View Article and Find Full Text PDFBackground: Tauopathies are a group of neurodegenerative disorders which are characterized by the accumulation of abnormal tau protein in the brain. However, the mechanistic understanding of pathogenic tau formation and spread within the brain remains elusive. Astrocytes are major immune reactive cells in the brain and have been implicated in exacerbating tau pathology by releasing extracellular vesicles (AEVs) containing pro-inflammatory cytokines and chemokines upon activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!