Temperature dependence of the upper critical magnetic field (Hc2) of single crystalline FeTe0.5Se0.5(Tc = 14.5 K) have been determined by tunnel diode oscillator-based measurements in magnetic fields of up to 55 T and temperatures down to 1.6 K. The Werthamer-Helfand-Hohenberg model accounts for the data for magnetic field applied both parallel (H ‖ ab) and perpendicular (H ‖ c) to the iron conducting plane, in line with a single band superconductivity. Whereas Pauli pair breaking is negligible for H ‖ c, Pauli contribution is evidenced for H ‖ ab with Maki parameter α = 1.4, corresponding to Pauli field HP = 79 T. As a result, the Hc2 anisotropy [Formula: see text] which is already rather small at Tc (γ = 1.6) further decreases as the temperature decreases and becomes smaller than 1 at liquid helium temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/26/18/185701 | DOI Listing |
Biomed Phys Eng Express
January 2025
Children's Hospital of Eastern Switzerland, Claudiusstrasse 6, St.Gallen, 9006, SWITZERLAND.
Mapping the myomagnetic field of a straight and easily accessible muscle after electrical stimulation using triaxial optically pumped magnetometers (OPMs) to assess potential benefits for magnetomyography (MMG). Approach: Six triaxial OPMs were arranged in two rows with three sensors each along the abductor digiti minimi (ADM) muscle. The upper row of sensors was inclined by 45° with respect to the lower row and all sensors were aligned closely to the skin surface without direct contact.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Department 8.1 - Biomedical Magnetic Resonance, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.
Purpose: To develop a low-cost, high-performance, versatile, open-source console for low-field MRI applications that can integrate a multitude of different auxiliary sensors.
Methods: A new MR console was realized with four transmission and eight reception channels. The interface cards for signal transmission and reception are installed in PCI Express slots, allowing console integration in a commercial PC rack.
Environ Sci Technol
January 2025
National High Magnetic Field Laboratory Geochemistry Group and Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, United States.
Intensification of wastewater treatment residual (i.e., biosolid) applications to watersheds can alter the amount and composition of organic matter (OM) mobilized into waterways.
View Article and Find Full Text PDFFullerenes are statically pleasant species featuring symmetric cages, which can be modified upon reduction. Here, we theoretically account for the variation of 13C-NMR patterns in C60 and C70 upon six-fold reduction and the overall variation of the enabled shielding/deshielding regions induced by π and σ electrons according to different orientations of the external field and the related anisotropy. Our results show a significant modification of the chemical shift given by the main variation of the σ33 (or δ33) shielding component under the principal axis system (PAS) of the chemical shift anisotropy (CSA) at the representative carbon nucleus.
View Article and Find Full Text PDFACS Sens
January 2025
CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
Flexible pressure sensors are pivotal in advancing artificial intelligence, the Internet of Things (IoT), and wearable technologies. While microstructuring the functional layer of these sensors effectively enhances their performance, current fabrication methods often require complex equipment and time-consuming processes. Herein, we present a novel magnetization-induced self-assembly method to develop a magnetically grown microneedle array as a dielectric layer for flexible capacitive pressure sensors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!