Fluorescent nucleoside analogs replacing natural DNA bases in an oligonucleotide have been widely used for the detection of genetic material. Previously, we have described 2-((4-(trifluoromethyl) phenyl)-trans-vinyl)-2'-deoxy-adenosine, 6, a nucleoside analog with intrinsic fluorescence (NIF). Analog 6 exhibits a quantum yield 3115-fold higher than that of adenosine (φ 0.81) and maximum emission which is 120 nm red shifted (λem 439 nm). Here, we incorporated this analog in one or several positions of cyclin D1-targeting 15-mer oligonucleotides (ONs). The fluorescence of 6 was quenched upon incorporation into an oligonucleotide (ca. 1.5-22 fold), and was further reduced upon duplex formation. Specifically, ON7 exhibited a fluorescence decrease of ca. 2- or 3-fold upon duplex formation with complementary DNA or RNA strand, respectively. We determined the kinetics of dehybridization/rehybridization process in the presence of ssDNA or ssRNA targets to optimize our probes length and established the probes' selectivity towards a specific target. Furthermore, we proved specificity of our probe to the target vs. singly mismatched targets. Our most promising ds-NIF-probe, ON7:RNA, was used for the detection of cyclin D1 mRNA marker in cancerous cells total RNA extracts. The ds-probe specifically recognized the target as observed by a 2-fold fluorescence increase within 30 s at RT. These findings illustrate the potential of ds-NIF-probes for the diagnosis of breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2014.03.081 | DOI Listing |
Diseases
December 2024
Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan.
Objectives: Cyclosporine A promotes gingival fibrosis by enhancing the proliferation of gingival fibroblasts, leading to gingival overgrowth. The population of gingival fibroblasts is regulated by cell cycle machinery, which balances cell growth and inhibition. Cells that detect DNA damage pause at the G1/S checkpoint to repair the damage instead of progressing to the S phase.
View Article and Find Full Text PDFCytokine
December 2024
Department of General Surgery, Chun'an First People's Hosptial, Hangzhou, China. Electronic address:
Tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) has been reported to be upregulated in thyroid cancer (THCA). However, the role and mechanism of TNFRSF12A in THCA remain largely unknown. TNFRSF12A expression in THCA samples was analyzed using bioinformatics analysis.
View Article and Find Full Text PDFWei Sheng Yan Jiu
November 2024
NHC Key Laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
Objective: To explore the antitumor effect of Inonotus obliquus extract on 4T1 tumor-bearing mice in vivo and its possible mechanism.
Methods: 4T1 tumor-bearing mice model was established. After successful modeling, tumor-bearing mice were randomly divided into model control group, cyclophosphamide(CTX) positive group, and high, medium and low dose groups of Inonotus obliquus extract, with 10 mice in each group, which were administered continuously for 21 days.
J Lipid Res
December 2024
Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan. Electronic address:
Nuclear lipids play roles in regulatory processes such as signaling, transcriptional regulation, and DNA repair. In this report, we demonstrate that nuclear lipids may contribute to Ki-67-regulated chromosome integrity during mitosis. In COS-7 cells, nuclear lipids are enriched at the perichromosomal layer and excluded from intrachromosomal regions during early mitosis, but are then detected in intrachromosomal regions during late mitosis, as revealed by TT-ExM, an improved expansion microscopy technique that enables high-sensitivity, super-resolution imaging of proteins, lipids, and nuclear DNA.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan.
Gingival overgrowth caused by cyclosporine A is due to increased fibroblast proliferation in gingival tissues. Cell cycle system balances proliferation and anti-proliferation of gingival fibroblasts and plays a role in the maintenance of its population in gingival tissues. When cells detect and respond to abnormalities (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!