The hedgehog (Hh) signaling pathway is a key regulator during embryonic development, while in adults, it has limited functions such as stem cell maintenance and tissue repair. The aberrant activity of the Hh signaling in adults has been linked to numerous human cancers. Inhibition of Hh signaling therefore represents a promising approach toward novel anticancer therapies. The Smoothened (Smo) receptor mediates Hh signaling. Here we report a new series of Smo antagonists which were obtained by a scaffold hopping strategy. Compounds from this new scaffold demonstrated decent inhibition of Hh pathway signaling. The new scaffold can serve as a starting point for further optimization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2014.03.079 | DOI Listing |
Eur J Med Chem
January 2025
Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:
Organ fibrosis, such as lung fibrosis and liver fibrosis, is a progressive and fatal disease. Fibroblast growth factor receptors (FGFRs) play an important role in the development and progression of fibrosis. Through scaffold hopping, bioisosteric replacement design, and structure-activity relationship optimization, we developed a series of highly potent FGFRs inhibitors, and the indazole-containing candidate compound A16 showed potent kinase activity comparable to that of AZD4547.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China. Electronic address:
Concurrent inhibition of HDAC and BRD4, two well-established epigenetic targets for anti-tumor therapy, demonstrates the potential to enhance anti-tumor effects synergistically. The present study involves the development of a series of novel HDAC3/BRD4 dual inhibitors, followed by evaluation of their antitumor efficacy against several tumor models. Guided by scaffold hopping strategy, key pharmacophore of BRD4 inhibitor I-BET-151 was incorporated into an in-house developed HDAC3-selective inhibitor 17h.
View Article and Find Full Text PDFScience
January 2025
Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, USA.
Given the prevalence of nitrogen-containing heterocycles in commercial drugs, selectively incorporating a single nitrogen atom is a promising scaffold hopping approach to enhance chemical diversity in drug discovery libraries. We harness the distinct reactivity of sulfenylnitrenes, which insert a single nitrogen atom to transform readily available pyrroles, indoles, and imidazoles into synthetically challenging pyrimidines, quinazolines, and triazines, respectively. Our additive-free method for skeletal editing employs easily accessible, benchtop-stable sulfenylnitrene precursors over a broad temperature range (-30 to 150°C).
View Article and Find Full Text PDFBioorg Chem
December 2024
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China. Electronic address:
Given the ever-evolving landscape of antimicrobial resistance, the emergence of New Delhi metallo-β-lactamase-1 (NDM-1) has introduced a formidable challenge to global public health. In previous research, we identified the Compound Zndm19 as an NDM-1 inhibitor and reported Zndm19 derivatives, which exhibited moderate antibacterial activity when combined with meropenem (MEM). This moderate activity may have been due to the inability of Zndm19 to efficiently penetrate the bacterial outer membrane or its susceptibility to hydrolysis, which prevented it from exerting strong enzyme inhibition in synergy with bacterial cells.
View Article and Find Full Text PDFNat Commun
December 2024
National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China.
Skeleton editing for heteroarenes, especially pyrazoles, is challenging and remains scarce because these non-strained aromatics exhibit inert reactivities, making them relatively inactive for performing a dearomatization/cleavage sequence. Here, we disclose a cycloaddition-induced scaffold hopping of 5-hydroxypyrazoles to access the pyrazolopyridopyridazin-6-one skeleton through a single-operation protocol. By converting a five-membered aza-arene into a five-unit spine of a 6/6 fused-bicyclic, this work unlocks a ring-opening reactivity of the pyrazole core that involves a formal C = N bond cleavage while retaining the highly reactive N-N bond in the resulting product.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!