Surfaces with cell adhesiveness modulated at micro length scales can exploit differences between tissue/bacterial cell size, membrane/wall plasticity, and adhesion mechanisms to differentially control tissue-cell/material and bacteria/material interactions. This study explores the short-term interactions of Staphylococcus aureus and osteoblast-like cells with surfaces consisting of cell-adhesive circular patches (1-5 μm diameter) separated by non-adhesive electron-beam patterned poly(ethylene glycol) hydrogel thin films at inter-patch distances of 0.5-10 μm. Osteoblast-like U2OS cells both bind to and spread on the modulated surfaces, in some cases when the cell-adhesive area comprises only 9% of the total surface and in several cases at least as well as on the continuously adhesive control surfaces. In contrast, S. aureus adhesion rates are 7-20 times less on the modulated surfaces than on the control surfaces. Furthermore, the proliferation of those bacteria that do adhere is inhibited by the lateral confinement imposed by the non-adhesive boundaries surrounding each patch. These findings suggest a new approach to create biomaterial surfaces that may promote healing while simultaneously reducing the probability of infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2014.03.057 | DOI Listing |
BMC Res Notes
January 2025
Planta Piloto de Procesos Industriales Microbiológicos (PROIMI - CONICET), Tucumán, Argentina.
Background: Postharvest lemons are affected by several fungal infections, and as alternatives to chemical fungicides for combating these infections, different microbial biocontrol agents have been studied, with the Clavispora lusitaniae 146 strain standing out. Although strain 146 has proven to be an effective agent, the influence of a microbial biological control agent on the postharvest lemon microbiome has not been studied until now. Thus, this study aimed to evaluate how the epiphytic microbiome of postharvest lemons is affected by the application of the biocontrol yeast C.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Neurology, Huai'an First People's Hospital, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe West Road, Huai'an, 223300, Jiangsu, China.
A comprehensive genome-wide association study (GWAS) has validated the identification of the Plexin-A 4 (PLXNA4) gene as a novel susceptibility factor for Alzheimer's disease (AD). Nonetheless, the precise role of PLXNA4 gene polymorphisms in the pathophysiology of AD remains to be established. Consequently, this study is aimed at exploring the relationship between PLXNA4 gene polymorphisms and neuroimaging phenotypes intimately linked to AD.
View Article and Find Full Text PDFAlthough the toxic effect of Sedentary behavior (SED) on bone health has been demonstrated in the previous study, the underlying mechanisms of SED, or break SED to bone health remain unclear. In this study, we aim to investigate the effects of sedentary behavior (SED) on bone health, as well as the potential favor effects of moderate to vigorous physical activity (MVPA) and periodic interruptions of SED. To simulate SED, we used small Plexiglas cages (20.
View Article and Find Full Text PDFCell Struct Funct
January 2025
College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University.
The process of mammalian myogenesis is fundamental to understanding muscle development and holds broad relevance across multiple fields, from developmental biology to regenerative medicine. This review highlights two key aspects: myoblast proliferation and the role of cilia in this process. Myoblasts, as muscle precursor cells, must undergo tightly regulated cycles of proliferation and differentiation to ensure proper muscle growth and function.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Applied Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.
The phenomena occurring in a weld seam during advancement of a laser beam over a metallic component are still under dispute. The occurrence and evolution of porosity and the occasional blowout of melt need to be understood. Here, a recently developed X-ray tomoscopy setup is applied, providing one hundred 3D images per second to capture the temporal evolution of the melt pool in an AlSi9Cu3(Fe) die-casting while a laser beam advances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!