A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A prospective study of ¹⁸FDG-PET with CT coregistration for radiation treatment planning of lymphomas and other hematologic malignancies. | LitMetric

Purpose: This prospective single-institution study examined the impact of positron emission tomography (PET) with the use of 2-[(18)F] fluoro-2-deoxyglucose and computed tomography (CT) scan radiation treatment planning (TP) on target volume definition in lymphoma.

Methods And Materials: 118 patients underwent PET/CT TP during June 2007 to May 2009. Gross tumor volume (GTV) was contoured on CT-only and PET/CT studies by radiation oncologists (ROs) and nuclear medicine physicians (NMPs) for 95 patients with positive PET scans. Treatment plans and dose-volume histograms were generated for CT-only and PET/CT for 95 evaluable sites. Paired t test statistics and Pearson correlation coefficients were used for analysis.

Results: 70 (74%) patients had non-Hodgkin lymphoma, 10 (11%) had Hodgkin lymphoma, 12 (10%) had plasma-cell neoplasm, and 3 (3%) had other hematologic malignancies. Forty-three (45%) presented with relapsed/refractory disease. Forty-five (47%) received no prior chemotherapy. The addition of PET increased GTV as defined by ROs in 38 patients (median, 27%; range, 5%-70%) and decreased GTV in 41 (median, 39.5%; range, 5%-80%). The addition of PET increased GTV as defined by NMPs in 27 patients (median, 26.5%; range, 5%-95%) and decreased GTV in 52 (median, 70%; range, 5%-99%). The intraobserver correlation between CT-GTV and PET-GTV was higher for ROs than for NMPs (0.94, P<.01 vs 0.89, P<.01). On the basis of Bland-Altman plots, the PET-GTVs defined by ROs were larger than those defined by NMPs. On evaluation of clinical TPs, only 4 (4%) patients had inadequate target coverage (D95 <95%) of the PET-GTV defined by NMPs.

Conclusions: Significant differences between the RO and NMP volumes were identified when PET was coregistered to CT for radiation planning. Despite this, the PET-GTV defined by ROs and NMPs received acceptable prescription dose in nearly all patients. However, given the potential for a marginal miss, consultation with an experienced PET reader is highly encouraged when PET/CT volumes are delineated, particularly for questionable lesions and to assure complete and accurate target volume coverage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568241PMC
http://dx.doi.org/10.1016/j.ijrobp.2014.02.006DOI Listing

Publication Analysis

Top Keywords

radiation treatment
8
treatment planning
8
hematologic malignancies
8
ct-only pet/ct
8
nmps patients
8
addition pet
8
pet increased
8
increased gtv
8
gtv defined
8
patients median
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!