A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Potential of magnetic resonance-guided focused ultrasound for intracranial hemorrhage: an in vivo feasibility study. | LitMetric

Background: Because of the paucity of effective treatments for intracranial hemorrhage (ICH), the mortality rate remains at 40%-60%. A novel application of magnetic resonance-guided focused ultrasound (MRgFUS) for ICH may offer an alternative noninvasive treatment through the precise delivery of FUS under real-time MR imaging (MRI) guidance. The purpose of the present study was to optimize the parameters for rapid, effective, and safe trans-skull large clot liquefaction using in vivo porcine and ex vivo human skull models to provide a clinically relevant proof of concept.

Methods: The transcranial effectiveness of MRgFUS was tested ex vivo by introducing a porcine blood clot into a human skull, without introducing tissue plasminogen activator (tPA). We used an experimental human head device to deliver pulsed FUS sonications at an acoustic power of 600-900 W for 5-10 seconds. A 3-mL clot was also introduced in a porcine brain and sonicated in vivo with one 5-second pulse of 700 W through a bone window or with 3000 W when treated through an ex vivo human skull. Treatment targeting was guided by MRI, and the tissue temperature was monitored online. Liquefied volumes were measured as hyperintense regions on T2-weighted MR images.

Results: In both in vivo porcine blood clot through a craniectomy model and the porcine clot in an ex vivo human skull model targeted clot liquefaction was achieved, with only marginal increase in temperature in the surrounding tissue.

Conclusions: Our results demonstrate the feasibility of fast, efficient, and safe thrombolysis in an in vivo porcine model of ICH and in 2 ex vivo models using a human skull, without introducing tPA. Future studies will further optimize parameters and assess the nature of sonication-mediated versus natural clot lysis, the risk of rebleeding, the potential effect on the adjacent parenchyma, and the chemical and toxicity profiles of resulting lysate particles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2013.12.044DOI Listing

Publication Analysis

Top Keywords

human skull
20
in vivo porcine
12
ex vivo human
12
magnetic resonance-guided
8
resonance-guided focused
8
focused ultrasound
8
intracranial hemorrhage
8
optimize parameters
8
clot liquefaction
8
porcine blood
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!