For more than a century, the analyses of painting fragments have been carried out mainly through the preparation of thick resin-embedded cross-sections. Taking into account the development of innovative micro-analytical imaging techniques, alternatives to this standard preparation method are considered. Consequently, dedicated efforts are required to develop preparation protocols limiting the risks of chemical interferences (solubilisation, reduction/oxidation or other reactions) which modify the sample during its preparation, as well as the risks of analytical interferences (overlap of detected signals coming from the sample and from materials used in the preparation). This study focuses particularly on the preparation of thin-sections (1-20 μm) for single or combined fourier transform infrared (FTIR) spectroscopy and X-ray 2D micro-analysis. A few strategies specially developed for the μFTIR analysis of painting cross-sections have already been reported and their potential extrapolation to the preparation of thin-sections is discussed. In addition, we propose two new specific methods: (i) the first is based on a free-embedding approach, ensuring a complete chemical and analytical neutrality. It is illustrated through application on polymeric design objects corpus; (ii) the second is based on a barrier coating approach which strengthens the sample and avoids the penetration of the resin into the sample. The barrier coating investigated is a silver chloride salt, an infrared transparent material, which remains malleable and soft after pellet compression, enabling microtoming. This last method was successfully applied to the preparation of a fragment from a gilded Chinese sculpture (15th C.) and was used to unravel a unique complex stratigraphy when combining μFTIR and μXRF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2014.03.025 | DOI Listing |
J Am Soc Mass Spectrom
January 2025
Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands.
Mass spectrometry imaging (MSI) techniques enable the generation of molecular maps from complex and heterogeneous matrices. A burger patty, whether plant-based or meat-based, represents one such complex matrix where studying the spatial distribution of components can unveil crucial features relevant to the consumer experience or production process. Furthermore, the MSI data can aid in the classification of ingredients and composition.
View Article and Find Full Text PDFJ Geophys Res Planets
December 2024
The Apollo 17 73001/73002 double drive tube, collected at the base of the South Massif in the Taurus-Littrow Valley, was opened in 2019 as part of the Apollo Next Generation Sample Analysis program (ANGSA). A series of continuous thin sections were prepared capturing the full length of the upper portion of the double drive tube (73002). The aim of this study was to use Quantitative Evaluation of Minerals by SCANing electron microscopy (QEMSCAN), to search for clasts of non-lunar meteoritic origin and to analyze the mineralogy and textures within the core.
View Article and Find Full Text PDFSci Rep
November 2024
Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, 76344, Germany.
Ultramicrotomy is a well-established technique that has been applied in biology and medical research to produce thin sections or a blockface of an embedded sample for microscopy. Recently, this technique has also been applied in materials science or micro- and nanotechnology as a sample preparation method for subsequent characterization. In this work, an application of ultramicrotomy for the cross-section preparation of an inkjet-printed multilayer structure is demonstrated.
View Article and Find Full Text PDFSci Rep
November 2024
Geological Engineering Department, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey.
In brittle rocks, deformation is characterized by the initiation and propagation of cracks at both microscale and mesoscale levels. This study explores how rock texture influences the evolution of cracking networks and progressive rock damage results under uniaxial compression. 3D discrete analyses were employed to identify the critical stresses of three different rock types.
View Article and Find Full Text PDFObjective: Aim: Determining the characteristics of urinary stone composition in inhabitants of an industrially advanced region afflicted with oxalate and urate urolithiasis.
Patients And Methods: Materials and Methods: A comparative analysis of the morphology of 246 kidney stones from residents of one of heavily industrialized region of Ukraine, was conducted. Petrographic examination of the calculi was performed through microscopic analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!