A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Implant-abutment interface: a comparison of the ultimate force to failure among narrow-diameter implant systems. | LitMetric

Implant-abutment interface: a comparison of the ultimate force to failure among narrow-diameter implant systems.

J Prosthet Dent

Professor, Division of Restorative and Prosthetic Dentistry, College of Dentistry, The Ohio State University, Columbus, Ohio.

Published: August 2014

Statement Of Problem: Limited available alveolar ridge bone and space deficiencies are some of the challenging scenarios that have led many dental implant manufacturers to develop narrow-diameter implants of various designs. Clinicians may have concerns about the durability and function of the narrow-diameter implants.

Purpose: The purpose of this study was to explore and compare the ultimate failure resistance of the smallest diameter of the 2-stage type implant provided by 5 commonly used dental implant systems.

Material And Methods: Thirty implants, Astra OsseoSpeed 3.0 mm and 3.5 mm, Straumann Bone Level 3.3 mm, Zimmer Tapered Screw-Vent 3.7 mm, Full Osseotite Certain 3.25 mm, and NobelSpeedy Replace 3.5 mm, 5 of each type, were tested in this study. A rigid clamp was used to hold the implants at a 30-degree angle to a static load vector. The load continued until the specimen broke or obviously deformed. Peak loads were recorded at that point for all the studied implant systems. Student t test and 1-way ANOVA were used to compare the mean peak load values (α=.05).

Results: The mean fracture/deformation peak load values were 367.20 N ± 98.05 for Astra OsseoSpeed 3.0 mm; 568.80 N ± 85.24 for Astra OsseoSpeed 3.5 mm; 679.00 N ± 81.09 for Full Osseotite Certain 3.25 mm; 553.4 N ± 56.96 for NobelSpeedy Replace 3.5 mm; 802.80 N ± 134.50 for Zimmer Tapered Screw-Vent 3.7 mm; and 576.20 N ± 71.45 for Straumann Bone Level 3.3 mm. Generally, a higher load was required to cause failure in implants with larger diameters than in narrower-diameter implants, and more force was necessary to cause failure in Ti6Al4V alloy implants than in commercially pure titanium implants.

Conclusions: With regard to implant diameter and ultimate failure strength, Osseotite Certain 3.25 mm was considered to be more advantageous in comparison with the other implants tested.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prosdent.2014.01.020DOI Listing

Publication Analysis

Top Keywords

astra osseospeed
12
osseotite 325
12
force failure
8
implant systems
8
dental implant
8
ultimate failure
8
straumann bone
8
bone level
8
zimmer tapered
8
tapered screw-vent
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!