Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange.

Environ Microbiol

Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA; Key Laboratory of Coastal Biology and Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China.

Published: March 2015

Nanoscale magnetite can facilitate microbial extracellular electron transfer that plays an important role in biogeochemical cycles, bioremediation and several bioenergy strategies, but the mechanisms for the stimulation of extracellular electron transfer are poorly understood. Further investigation revealed that magnetite attached to the electrically conductive pili of Geobacter species in a manner reminiscent of the association of the multi-heme c-type cytochrome OmcS with the pili of Geobacter sulfurreducens. Magnetite conferred extracellular electron capabilities on an OmcS-deficient strain unable to participate in interspecies electron transfer or Fe(III) oxide reduction. In the presence of magnetite wild-type cells repressed expression of the OmcS gene, suggesting that cells might need to produce less OmcS when magnetite was available. The finding that magnetite can compensate for the lack of the electron transfer functions of a multi-heme c-type cytochrome has implications not only for the function of modern microbes, but also for the early evolution of microbial electron transport mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.12485DOI Listing

Publication Analysis

Top Keywords

extracellular electron
16
electron transfer
16
c-type cytochrome
12
pili geobacter
8
multi-heme c-type
8
magnetite
7
electron
7
magnetite compensates
4
compensates lack
4
lack pilin-associated
4

Similar Publications

Unraveling the Trade-Off Effect of Pyrogenic Carbons Between Biopseudocapacitors and Bioconductors During Anaerobic Methanogenesis.

Environ Sci Technol

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.

Pyrogenic carbons (PCs), with varying structures depending on the materials and thermal treatment conditions, have been extensively used to enhance anaerobic digestion by mediating electron transfer. However, the underlying mechanism has yet to be explored. Herein, the redirection and enhancement of the direct interspecies electron transfer (DIET) pathway were evidenced, along with the upregulated electrochemical properties and structural proteins in the methanogenic consortia.

View Article and Find Full Text PDF

Tissue regeneration after a wound occurs through three main overlapping and interrelated stages namely inflammatory, proliferative, and remodelling phases, respectively. The inflammatory phase is key for successful tissue reconstruction and triggers the proliferative phase. The macrophages in the non-healing wounds remain in the inflammatory loop, but their phenotypes can be changed interactions with nanofibre-based scaffolds mimicking the organisation of the native structural support of healthy tissues.

View Article and Find Full Text PDF

Accelerated Destruction of Passive Film and Microbial Corrosion of 316L Stainless Steel via Extracellular Electron Transfer.

Angew Chem Int Ed Engl

January 2025

Northeastern University, Corrosion and Protection Center, NO. 3-11, Wenhua Road, Heping District, Shenyang, P. R. China, Shenyang, CHINA.

The dense passive film on 316L stainless steel is the key in its corrosion resistance. Its interactions with an electroactive biofilm are critical in deciphering microbial corrosion. Herein, an in-depth investigation using genetic manipulations and addition of an exogenous electron mediator found that extracellular electron transfer (EET) mediated by the electroactive S.

View Article and Find Full Text PDF

Understanding the electron pathway fluidity of Synechocystis in biophotovoltaics.

Plant J

January 2025

Systems Biotechnology Group, Department Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04318, Germany.

Biophotovoltaics offers a promising low-carbon footprint approach to utilize solar energy. It aims to couple natural oxygenic photosynthetic electrons to an external electron sink. This lays the foundation for a potentially high light-to-energy efficiency of the Biophotovoltaic process.

View Article and Find Full Text PDF

Matrix-bound vesicles (MBVs), an integral part of the extracellular matrix (ECM), are emerging as pivotal factors in ECM-driven molecular signaling. This study is the first to report the isolation of MBVs from porcine arterial endothelial cell basement membranes (A-MBVs) and thyroid cartilage (C-MBVs), the latter serving as a negative control due to its minimal vascular characteristics. Using Transmission Electron Microscopy (TEM), Nano-Tracking Analysis (NTA), Electrochemical Impedance Spectroscopy (EIS), and Atomic Force Microscopy (AFM), we orthogonally characterized the isolated MBVs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!