CCCTC-binding factor (CTCF), a highly conserved zinc finger protein, is a master organizer of genome spatial organization and has multiple functions in gene regulation. Mounting evidence indicates that CTCF regulates the imprinted genes Igf2 and H19 by organizing chromatin at the Igf2/H19 locus, although the mechanism by which CTCF carries out this function is not fully understood. By yeast two-hybrid screening, we identified vigilin, a multi-KH-domain protein, as a new partner of CTCF. Subsequent coimmunoprecipitation and glutathione S-transferase pulldown experiments confirmed that vigilin interacts with CTCF. Moreover, vigilin is present at several known CTCF target sites, such as the promoter regions of c-myc and BRCA1, the locus control region of β-globin, and several regions within the Igf2/H19 locus. In vivo depletion of vigilin did not affect CTCF binding; however, knockdown of CTCF reduced vigilin binding to the H19 imprinting control region. Furthermore, ectopic expression of vigilin significantly downregulated Igf2 and upregulated H19, whereas depletion of vigilin upregulated Igf2 and downregulated H19, in HepG2, CNE1 and HeLa cells. These results reveal the functional relevance of vigilin and CTCF, and show that the CTCF-vigilin complex contributes to regulation of Igf2/H19.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.12816 | DOI Listing |
Nat Commun
January 2025
Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Transcription factors guide tissue development by binding to developmental stage-specific targets and establishing an appropriate enhancer landscape. In turn, DNA and chromatin modifications direct the genomic binding of transcription factors. However, how transcription factors navigate chromatin features to selectively bind a small subset of all the possible genomic target loci remains poorly understood.
View Article and Find Full Text PDFDosage-sensitive transcription factors (TFs) underlie altered gene regulation in human developmental disorders, and cell-type specific gene regulation is linked to the reorganization of 3D chromatin during cellular differentiation. Here, we show dose-dependent regulation of chromatin organization by the congenital heart disease (CHD)- linked, lineage-restricted TF TBX5 in human cardiomyocyte differentiation. Genome organization, including compartments, topologically associated domains, and chromatin loops, are sensitive to reduced dosage in a human model of CHD, with variations in response across individual cells.
View Article and Find Full Text PDFThe six subunit Origin Recognition Complex (ORC) is a DNA replication initiator that also promotes heterochromatinization in some species. A multi-omics study in a human cell line with mutations in three subunits of ORC, reveals that the subunits bind to DNA independent of each other rather than as part of a common six-subunit ORC. While DNA-bound ORC2 was seen to compact chromatin and attract repressive histone marks, the activation of chromatin and protection from repressive marks was seen at a large number of sites.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine- Affiliated Renji Hospital, Shanghai, 200127, China.
T cell activation is accompanied by extensive changes in epigenome. However, the high-ordered chromatin organization underpinning CD8 T cell activation is not fully known. Here, we show extensive changes in the three-dimensional genome during CD8 T cell activation, associated with changes in gene transcription.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China.
The importance of ferroptosis in the occurrence and progression of atherosclerosis is gradually being recognized. The stimulatory G protein α subunit (Gsα) plays a crucial role in the physiology of endothelial cells (ECs). Our previous study showed that endothelial Gsα could regulate angiogenesis and preserve endothelial permeability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!