A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stationary chemical gradients for concentration gradient-based separation and focusing in nanofluidic channels. | LitMetric

Previous work has demonstrated the simultaneous concentration and separation of proteins via a stable ion concentration gradient established within a nanochannel (Inglis Angew. Chem., Int. Ed. 2001, 50, 7546-7550). To gain a better understanding of how this novel technique works, we here examine experimentally and numerically how the underlying electric potential controlled ion concentration gradients can be formed and controlled. Four nanochannel geometries are considered. Measured fluorescence profiles, a direct indicator of ion concentrations within the Tris-fluorescein buffer solution, closely match depth-averaged fluorescence profiles calculated from the simulations. The simulations include multiple reacting species within the fluid bulk and surface wall charge regulation whereby the deprotonation of silica-bound silanol groups is governed by the local pH. The three-dimensional system is simulated in two dimensions by averaging the governing equations across the (varying) nanochannel width, allowing accurate numerical results to be generated for the computationally challenging high aspect ratio nanochannel geometries. An electrokinetic circuit analysis is incorporated to directly relate the potential drop across the (simulated) nanochannel to that applied across the experimental chip device (which includes serially connected microchannels). The merit of the thick double layer, potential-controlled concentration gradient as a particle focusing and separation tool is discussed, linking this work to the previously presented protein trapping experiments. We explain why stable traps are formed when the flow is in the opposite direction to the concentration gradient, allowing particle separation near the low concentration end of the nanochannel. We predict that tapered, rather than straight nanochannels are better at separating particles of different electrophoretic mobilities.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la500206bDOI Listing

Publication Analysis

Top Keywords

concentration gradient
12
ion concentration
8
nanochannel geometries
8
fluorescence profiles
8
concentration
7
nanochannel
6
stationary chemical
4
chemical gradients
4
gradients concentration
4
concentration gradient-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!