Dislocability of localization devices for nonpalpable breast lesions: experimental results.

Radiol Res Pract

Department of Radiology, Charité School of Medicine and University Hospital, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.

Published: April 2014

Purpose. For accurate resection of nonpalpable malignant breast lesions with a tumor-free resection rim, an exact and stable wire localization is essential. We tested the resistance towards traction force of different localization devices used in our clinic for breast lesions in two types of tissue. Materials and Methods. Eight different commercially available hook-wire devices were examined for resistance towards traction force using an analogue spring scale. Results. Most systems showed a high level of movement already under small traction force. Retractable systems with round hooks such as the Bard DuaLok , the Fil d'Ariane, and the RPLN Breast Localization Device withstood less traction force than the other systems. However, the Bard DuaLok system was very resistant towards a small traction force of 50 g when compared to the other systems. The Ultrawire Breast Localization Device withstood the most traction force in softer tissue and Kopans Breast Lesion Localization Needle withstood the most force in harder tissue. Conclusion. The Ultrawire Breast Localization Device and Kopans Breast Lesion Localization Needle withstood the most traction force. In general retractable systems withstand less traction force than nonretractable systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964887PMC
http://dx.doi.org/10.1155/2014/425823DOI Listing

Publication Analysis

Top Keywords

traction force
32
breast lesions
12
breast localization
12
localization device
12
withstood traction
12
force
9
localization devices
8
breast
8
traction
8
resistance traction
8

Similar Publications

Ciliary muscle traction during accommodation is able to induce optic nerve head deformation.

Eye (Lond)

January 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.

Objectives: To use finite element (FE) modeling and in vivo optical coherence tomography (OCT) imaging to explore the effect of ciliary muscle traction on optic nerve head (ONH) deformation during accommodation.

Methods: We developed a FE model to mimic the ciliary muscle traction during accommodation, and varied the stiffness of the sclera, choroid, Bruch's membrane (BM), prelaminar neural tissue and lamina cribrosa (LC) to assess their effects on accommodation-induced ONH strains. To validate the FE model, OCT images of the right eyes' ONHs from 20 subjects (25 ± 1.

View Article and Find Full Text PDF

Objectives:  This study aims to detect early class I, II, and III malocclusions through the muscle strength of the lips, tongue, masseter, and temporalis.

Materials And Methods:  The study subjects were 30 pediatric patients with predetermined criteria. The subjects were divided into class I, II, and III malocclusions where each classification of malocclusion amounted to 10 people.

View Article and Find Full Text PDF

Background: For patients with osteoporosis and rotator cuff tears, there is still no consensus on current treatment methods. The material, structure, and number of anchors have important effects on the repair outcome.

Purpose: To investigate the use of chitosan quaternary ammonium salt-coated nickel-titanium memory alloy (NTMA) anchors to treat rotator cuff injury in shoulders with osteoporosis in a rabbit osteoporosis model.

View Article and Find Full Text PDF

In order to reduce turnout rail wear, the paper establishes a coupled dynamics model and a turnout rail wear model that consider the true profile of the turnout rail, the vehicle's continuous traction force while passing, and the operational resistance. Comparative analysis of various models for predicting turnout rail wear indicates that the wear energy model is better suited for this purpose. The ideal profile update step for the turnout rail is 0.

View Article and Find Full Text PDF

Based on the 5615 working face of Beisu Coal Mine, a virtual prototype of the shearer cable drag system was developed using the MG2×70/325-BWD electric traction shearer as the carrier, in combination with CERO and ADAMS software. The shearer cable was equivalently modeled using the discrete rigid body method to study the dynamic characteristics of the drag system. This research provides a foundation for the design and optimization of both the cable and cable clamps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!