Marginal and internal fit of cobalt-chromium fixed dental prostheses generated from digital and conventional impressions.

Int J Dent

Department of Prosthetic Dentistry/Dental Materials Science, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 12 F, P.O. Box 450, 40530 Gothenburg, Sweden.

Published: April 2014

Objectives. Digital impressions are increasingly used and have the potential to avoid the problem of inaccurate impressions. Only a few studies to verify the accuracy of digital impressions have been performed. The purpose of this study was to compare the marginal and internal fit of 3-unit tooth supported fixed dental prostheses (FDPs) fabricated from digital and conventional impressions. Methods. Ten FDPs were produced from digital impressions using the iTero system and 10 FDPs were produced using vinyl polysiloxane (VPS) impression material. A triple-scan protocol and CAD software were used for measuring and calculating discrepancies of the FDPs at 3 standard areas: mean internal discrepancy, absolute marginal gap, and cervical area discrepancy. The Mann-Whitney U test was used for analyzing the results. Results. For conventional and digital impressions, respectively, FDPs had an absolute marginal gap of 147  μ m and 142  μ m, cervical area discrepancy of 69  μ m and 44  μ m, and mean internal discrepancy of 117  μ m and 93  μ m. The differences were statistically significant in the cervical and internal areas (P < 0.001). Significance. The results indicated that the digital impression technique is more exact and can generate 3-unit FDPs with a significantly closer fit compared to the VPS technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958727PMC
http://dx.doi.org/10.1155/2014/534382DOI Listing

Publication Analysis

Top Keywords

digital impressions
16
marginal internal
8
internal fit
8
fixed dental
8
dental prostheses
8
digital conventional
8
conventional impressions
8
fdps produced
8
internal discrepancy
8
absolute marginal
8

Similar Publications

Objective: To quantitatively evaluate the accuracy of data obtained from liquid-interference surfaces using an intraoral 3D scanner (IOS) integrated with a compressed airflow system, so as to provide clinical proof of accuracy for the application of the compressed airflow system-based scanning head in improving data quality on liquid-interference surfaces.

Methods: The study selected a standard model as the scanning object, adhering to the "YY/T 1818-2022 Dental Science Intraoral Digital Impression Scanner" guidelines, a standard that defined parameters for intraoral scanning. To establish a baseline for accuracy, the ATOS Q 12M scanner, known for its high precision, was used to generate true reference values.

View Article and Find Full Text PDF

Introduction: Using digital technology, respectively the use of intraoral scanners has increased exponentially in recent years. Intraoral scanners have gained traction and widespread use in the field of dental prosthetics and orthodontics. While the use of these digital devices enables the detection of visible areas of error in order to allow clinicians to correct those areas immediately without a need of restarting the entire process from the beginning as it should be done in the conventional method and subsequent procedures.

View Article and Find Full Text PDF

Purpose: This study examined the effect of assistive device use on the precision of digital impressions for multiple implants placed in a fully edentulous maxilla in vivo.

Methods: A total of eight participants with fully edentulous maxillae and four implants at position #15, #12, #22, and #25 were included in the study. The assistive device was made using CAD/CAM technology.

View Article and Find Full Text PDF

Objective: This study aims to evaluate the clinical transfer accuracy of partially enclosed single hard vacuum-formed trays based on three-dimensional (3D) printed models for lingual bracket indirect bonding.

Materials And Methods: Thirty-two consecutive patients receiving lingual orthodontic treatment were enrolled. Digital models with ideal bracket positions were 3D-printed, followed by fabrication of partially enclosed single hard vacuum-formed trays.

View Article and Find Full Text PDF

A cross-sectional study on improving clinical efficiency through centralized digital impression.

Hua Xi Kou Qiang Yi Xue Za Zhi

February 2025

Center of Stomatology, Peking University Shenzhen Hospital, Shenzhen 518036, China.

Objectives: This study aims to explore the effect of improving clinical efficiency by replacing traditional impression workflow with centralized digital impression workflow.

Methods: The department of prosthodontics in Center of Stomatology, Peking University Shenzhen Hospital has improved the clinical workflow by replacing the traditional impression made by doctors using impression materials for each patient with a centralized digital impression made by one technician for all patients in the department. This cross-sectional study recorded the chairside time required for impression taking in patients undergoing single posterior zirconia full crown restoration before clinical process improvement; the time required for centralized digital impression production; the comfort level of patients; and the adjacency relationship, occlusal contact relationship, and time required for prostheses adjusting (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!