Toughening elastomers with sacrificial bonds and watching them break.

Science

École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI) ParisTech, UMR 7615, 10, Rue Vauquelin, 75231 Paris Cédex 05, France.

Published: April 2014

Elastomers are widely used because of their large-strain reversible deformability. Most unfilled elastomers suffer from a poor mechanical strength, which limits their use. Using sacrificial bonds, we show how brittle, unfilled elastomers can be strongly reinforced in stiffness and toughness (up to 4 megapascals and 9 kilojoules per square meter) by introducing a variable proportion of isotropically prestretched chains that can break and dissipate energy before the material fails. Chemoluminescent cross-linking molecules, which emit light as they break, map in real time where and when many of these internal bonds break ahead of a propagating crack. The simple methodology that we use to introduce sacrificial bonds, combined with the mapping of where bonds break, has the potential to stimulate the development of new classes of unfilled tough elastomers and better molecular models of the fracture of soft materials.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1248494DOI Listing

Publication Analysis

Top Keywords

sacrificial bonds
12
unfilled elastomers
8
bonds break
8
bonds
5
break
5
toughening elastomers
4
elastomers sacrificial
4
bonds watching
4
watching break
4
elastomers
4

Similar Publications

Using Pickering emulsion (PE) as the carrier of active compounds in bio-based coatings constitutes a highly promising research domain. This study focused on creating a food-grade, biocompatible, and antibacterial PE to coat fresh fruits and vegetables, extending their shelf life. Hollow zein/soluble soybean polysaccharide nanoparticles loaded with thymol (H-ZSH/T) were produced using NaHCO as a sacrificial template to stabilize PE.

View Article and Find Full Text PDF

As an efficient, sustainable, and environmentally friendly semiconductor material, covalent organic frameworks (COFs) can generate hydrogen peroxide (HO) by photocatalysis, attracting wide attention in recent years. Herein, the effects of hydroxyl, methoxyl, and vinyl groups of imide-linked two-dimensional (2D) COFs on the photocatalytic production of HO were studied theoretically and experimentally. The introduction of vinyl groups greatly promotes the photogenerated charge separation and migration of COFs, providing more oxygen adsorption sites, stronger proton affinity, and lower intermediate binding energy, which effectively facilitates the rapid conversion of oxygen to HO.

View Article and Find Full Text PDF

We report a silicon anode for lithium-ion batteries consisting of a layer of 100% nanotubes directly bonded to copper foil. The process involved silicon deposition on a sacrificial zinc oxide nanorod film and removal of zinc oxide to produce a nanotube film directly on thin copper foils. The thickness of resulting films ranged from 9 to 20 μm with Si nanotubes having diameters of 200-400 nm and lengths of 2-10 μm.

View Article and Find Full Text PDF

Autocatalytic Interfacial Synthesis of Self-Standing Amide-Linked Covalent Organic Framework Membranes.

Angew Chem Int Ed Engl

January 2025

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.

The synthesis of crystalline covalent organic frameworks (COFs) has in principle relied on reversible dynamic chemistry. A general method to synthesize irreversibly bonded COFs is urgently demanded for driving the COF chemistry to a new era. Here we report a universal two-step method for the straightforward synthesis of irreversibly amide-linked COF (AmCOF) membranes by autocatalytic interfacial polymerization (AIP).

View Article and Find Full Text PDF

Silicon-Enhanced PVA Hydrogels in Flexible Sensors: Mechanism, Applications, and Recycling.

Gels

December 2024

Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China.

Hydrogels, known for their outstanding water absorption, flexibility, and biocompatibility, have been widely utilized in various fields. Nevertheless, their application is still limited by their relatively low mechanical performance. This study has successfully developed a dual-network hydrogel with exceptional mechanical properties by embedding amino-functionalized polysiloxane (APSi) networks into a polyvinyl alcohol (PVA) matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!