Avoiding predators is an essential behavior in which animals must quickly transform sensory cues into evasive actions. Sensory reflexes are particularly fast in flying insects such as flies, but the means by which they evade aerial predators is not known. Using high-speed videography and automated tracking of flies in combination with aerodynamic measurements on flapping robots, we show that flying flies react to looming stimuli with directed banked turns. The maneuver consists of a rapid body rotation followed immediately by an active counter-rotation and is enacted by remarkably subtle changes in wing motion. These evasive maneuvers of flies are substantially faster than steering maneuvers measured previously and indicate the existence of sensory-motor circuitry that can reorient the fly's flight path within a few wingbeats.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1248955DOI Listing

Publication Analysis

Top Keywords

flies evade
8
directed banked
8
banked turns
8
flies
5
evade looming
4
looming targets
4
targets executing
4
executing rapid
4
rapid visually
4
visually directed
4

Similar Publications

The parasitoid Exorista sorbillans exploits host silkworm encapsulation to build respiratory funnel for survival.

Insect Biochem Mol Biol

December 2024

School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China; Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, China. Electronic address:

Insect parasitoids have evolved sophisticated strategies to evade or modulate host immunity for parasitic infections. The precise mechanisms by which parasitoids counteract host anti-parasitic responses are poorly defined. Here we report a novel immune evasion strategy employed by the parasitoid Exorista sorbillans (Diptera: Tachinidae) to establish infection.

View Article and Find Full Text PDF

Arthropod-borne viruses (arboviruses) are transmitted to humans by arthropod vectors and pose a serious threat to global public health. Neurotropic arboviruses including Sindbis virus (SINV) persistently infect the central nervous system (CNS) of vector insects without causing notable pathological changes or affecting their behavior or lifespan. However, the mechanisms by which vector insects evade these viral infections in the brains are poorly understood.

View Article and Find Full Text PDF

The protozoan parasite Trypanosoma brucei evades clearance by the host immune system through antigenic variation of its dense variant surface glycoprotein (VSG) coat, periodically 'switching' expression of the VSG using a large genomic repertoire of VSG-encoding genes. Recent studies of antigenic variation in vivo have focused near exclusively on parasites in the bloodstream, but research has shown that many, if not most, parasites reside in the interstitial spaces of tissues. We sought to explore the dynamics of antigenic variation in extravascular parasite populations using VSG-seq, a high-throughput sequencing approach for profiling VSGs expressed in populations of T.

View Article and Find Full Text PDF

The RNA genome of orthoflaviviruses encodes a methyltransferase within the non-structural protein NS5, which is involved in 2'-O-methylation of the 5'-terminal nucleotide of the viral genome resulting in a cap1 structure. While a 2'-O-unmethylated cap0 structure is recognized in vertebrates by the RNA sensor RIG-I, the cap1 structure allows orthoflaviviruses to evade the vertebrate innate immune system. Here, we analyzed whether the cap0 structure is also recognized in mosquitoes.

View Article and Find Full Text PDF

Generation of Devil Facial Tumour Cells Co-Expressing MHC With CD80, CD86 or 41BBL to Enhance Tumour Immunogenicity.

Parasite Immunol

September 2024

Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.

The major histocompatibility complex (MHC) molecules play an integral role in the adaptive immune response to transmissible cancers through tumour antigen presentation and recognition of allogeneic MHC molecules. The transmissible devil facial tumours 1 and 2 (DFT1 and DFT2) modulate MHC-I antigen presentation to evade host immune responses and facilitate transmission of tumours cells to new Tasmanian devil (Sarcophilus harrisii) hosts. To enhance T-cell-driven tumour immunogenicity for vaccination and immunotherapy, DFT1 and DFT2 cells were co-transfected with (i) NLRC5 for MHC-I expression or CIITA for MHC-I and MHC-II expression, and (ii) a co-stimulatory molecule, either CD80, CD86 or 41BBL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!