AI Article Synopsis

  • TET2 is a protein that converts 5-methylcytosine to 5-hydroxymethylcytosine, crucial for normal blood cell development, but its role in human embryonic stem cell differentiation is not well understood.
  • TET2 expression is low in embryonic stem cells but increases during differentiation; knocking it down shifts differentiation towards neuroectoderm instead of other germ layers, which can be reversed by reintroducing TET2.
  • TET2 influences the expression of the NANOG gene, and its absence affects the development of hematopoietic progenitors by increasing cell death and causing abnormal gene expression.

Article Abstract

Ten-eleven-translocation 2 (TET2) belongs to the TET protein family that catalyzes the conversion of 5-methylcytosine into 5-hydroxymethylcytosine and plays a central role in normal and malignant adult hematopoiesis. Yet the role of TET2 in human hematopoietic development remains largely unknown. Here, we show that TET2 expression is low in human embryonic stem cell (ESC) lines and increases during hematopoietic differentiation. shRNA-mediated TET2 knockdown had no effect on the pluripotency of various ESCs. However, it skewed their differentiation into neuroectoderm at the expense of endoderm and mesoderm both in vitro and in vivo. These effects were rescued by reintroducing the targeted TET2 protein. Moreover, TET2-driven differentiation was dependent on NANOG transcriptional factor. Indeed, TET2 bound to NANOG promoter and in TET2-deficient cells the methylation of the NANOG promoter correlated with a decreased in NANOG expression. The altered differentiation resulting from TET2 knockdown in ESCs led to a decrease in both the number and the cloning capacities of hematopoietic progenitors. These defects were due to an increased apoptosis and an altered gene expression profile, including abnormal expression of neuronal genes. Intriguingly, when TET2 was knockdown in hematopoietic cells, it increased hematopoietic development. In conclusion, our work suggests that TET2 is involved in different stages of human embryonic development, including induction of the mesoderm and hematopoietic differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/stem.1718DOI Listing

Publication Analysis

Top Keywords

hematopoietic differentiation
12
human embryonic
12
tet2 knockdown
12
tet2
10
mesoderm hematopoietic
8
embryonic stem
8
hematopoietic development
8
nanog promoter
8
hematopoietic
7
differentiation
6

Similar Publications

Osteogenic differentiation of bone marrow stem cells (BMSCs) is essential for bone tissue regeneration and repair. However, this process is often hindered by an unstable differentiation influenced by local microenvironmental factors. While small extracellular vesicles (sEVs) derived from osteogenically induced adipose mesenchymal stem cells (ADSCs) reportedly can promote osteogenic differentiation of BMSCs, the underlying molecular mechanisms remain incompletely understood.

View Article and Find Full Text PDF

Regenerative properties of bone marrow mesenchymal stem cell derived exosomes in rotator cuff tears.

J Transl Med

January 2025

Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.

Rotator cuff injury (RCI), characterized by shoulder pain and restricted mobility, represents a subset of tendon-bone insertion injuries (TBI). In the majority of cases, surgical reconstruction of the affected tendons or ligaments is required to address the damage. However, numerous clinical failures have underscored the suboptimal outcomes associated with such procedures.

View Article and Find Full Text PDF

The diagnostic value and clinical correlations of bone marrow supernatant S100A8 and S100A9 in myelodysplastic neoplasms.

Cytokine

January 2025

Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China. Electronic address:

Purpose: Myelodysplastic neoplasms (MDS) are heterogeneous neoplasms that originate from bone marrow (BM) hematopoietic stem cells. S100A8 and S100A9 (S100A8/9) are crucial molecules involved in the innate immune pathogenesis of MDS. This study aimed to explore the value of these molecules in the differential diagnosis of MDS, and analyze the correlations between their concentrations and clinical characteristics.

View Article and Find Full Text PDF

Protocol for differentiating hematopoietic progenitor cells from human pluripotent stem cells in chemically defined monolayer culture.

STAR Protoc

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China. Electronic address:

Human pluripotent stem cells (hPSCs) provide a powerful platform for generating hematopoietic progenitor cells (HPCs) and investigating hematopoietic development. Here, we present a protocol for maintaining hPSCs and inducing their differentiation into HPCs through the endothelial-to-hematopoietic transition (EHT) on vitronectin-coated plates. We outline steps for evaluating the efficiency of HPC generation and assessing their potential to differentiate into various hematopoietic lineages.

View Article and Find Full Text PDF

: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have demonstrated significant efficacy in obesity treatment beyond their original development for type-2 diabetes management. This comprehensive study investigated the relationship between GLP-1RA use and cancer incidence in individuals with obesity across a 5-year follow-up period. : We conducted a large-scale cohort study using the TriNetX US Collaborative Network database (2013-2023) examining adult patients with obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!