Lipopolysaccharide (LPS) is the main surface constituent of Gram-negative bacteria. Lipid A, the hydrophobic moiety, outer monolayer of the outer cell membrane forms the major component of LPS. Immunogenic Lipid A is recognized by the innate immune system through the TLR 4/MD-2 complex. Pseudomonas aeruginosa PAO1, a Gram-negative bacterium is known to cause nosocomial infection and known for its adaptation to adverse environmental conditions. Pseudomonas aeruginosa can infect a broad host spectrum including Caenorhabditis elegans, a simple free living soil nematode. Here, we reveal that PAO1 modifies its Lipid A during the host interaction with C. elegans. The penta-acylated form of Lipid A was identified by using matrix assisted laser desorption ionization-time of flight analysis and the β-(1,6)-linked disaccharide of glucosamine with phosphate groups, 2 and 2' amide linked fatty acid chain and 3 and 3' ester linked fatty acids were investigated for the modification using the non destructive (1)H NMR, spin-lattice (T₁) relaxation measurement, differential scanning calorimetry. T₁ relaxation measurements showed that the 2 and 2' amide linked fatty acid chain, -CH in the glucosamine disaccharide of PAO1 lipid A, in an exposed host had a different spin lattice relaxation time compared to an unexposed host and the findings were reconfirmed using in vitro human corneal epithelial cells cell lines. Furthermore, scanning electron microscope and confocal laser scanning microscopy analysis revealed that the P. aeruginosa PAO1 biofilm formation was disturbed in the exposed host condition. The daf-12, daf-16, tol-1, pmk-1, ins-7 and ilys3 immune genes of C. elegans were examined with live bacterial and isolated lipid moiety infection and the expression was found to be highly specific. Overall, the present study revealed that PAO1 modified its 2 and 2' amide linked fatty acid chain in the lipid A of PAO1 LPS during the exposed host condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11745-014-3898-3 | DOI Listing |
New Phytol
January 2025
Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, 4056, Basel, Switzerland.
Significant variation in plant organic compound hydrogen stable isotope (δH) values among species from a single location suggests species biochemistry diversity as a key driver. However, the biochemical mechanisms and the biological relevance behind this species-specific δH variation remain unclear. We analyzed δH values of cellulose and n-alkanes across 179 eudicot species in a botanical garden sampled in 2019, and cellulose, n-alkanes, fatty acids and phytol δH values from 56 eudicot species sampled in 2020.
View Article and Find Full Text PDFEur Eat Disord Rev
January 2025
Division of Neuroscience, Health Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain.
Objective: This systematic review explores the associations between qualitative/quantitative changes in gut microbiota and psychopathological symptoms or other clinical features in patients with eating disorders (EDs). Secondary outcomes include exploring gut microbiota changes in EDs and potential relationships with psychotropic drug use.
Method: A systematic search was conducted across biomedical databases from inception to June 2024 according to PRISMA guidelines.
Vopr Pitan
January 2025
Ufa University of Science and Technology, 450076, Ufa, Russian Federation.
The most common mechanism of the development of cardiovascular diseases is atherosclerosis, caused by genetic predisposition, hyperlipidemia, inflammation and metabolic disorders. Statins used in medicine inhibit endogenous cholesterol synthesis, but are characterized by diabetogenic effect, development of intolerance in 9.1%, and muscle symptoms in 10-25% of patients.
View Article and Find Full Text PDFChem Biomed Imaging
January 2025
Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States.
Due to uncontrolled cell proliferation and disrupted vascularization, many cancer cells in solid tumors have limited oxygen supply. The hypoxic microenvironments of tumors lead to metabolic reprogramming of cancer cells, contributing to therapy resistance and metastasis. To identify better targets for the effective removal of hypoxia-adaptive cancer cells, it is crucial to understand how cancer cells alter their metabolism in hypoxic conditions.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, 85013, USA.
The ApoE ε4 allele (APOEε4) is a major genetic risk factor for sporadic Alzheimer's disease (AD) and is linked to demyelination and cognitive decline. However, its effects on the lipid transporters apolipoprotein E (ApoE) and fatty acid-binding protein 7 (Fabp7), which are crucial for the maintenance of myelin in white matter (WM) during the progression of AD remain underexplored. To evaluate the effects of APOEε4 on ApoE, Fabp7 and myelin in the WM of the frontal cortex (FC), we examined individuals carrying one ε4 allele that came to autopsy with a premortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI) and mild to moderate AD compared with non-carrier counterparts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!