GaN nanowires are being pursued for optoelectronic and high-power applications. In either use, increases in operating temperature reduce both performance and reliability making it imperative to minimize thermal resistances. Since interfaces significantly influence the thermal response of nanosystems, the thermal boundary resistance between GaN nanowires and metal contacts has major significance. In response, we have performed systematic molecular dynamics simulations to study the thermal boundary conductance between GaN nanowires and Al films as a function of nanowire dimensions, packing density, and the depth the nanowire is embedded into the metal contact. At low packing densities, the apparent Kapitza conductance between GaN nanowires and an aluminum film is shown to be larger than when contact is made between films of these same materials. This enhancement decreases toward the film-film limit, however, as the packing density increases. For densely packed nanowires, maximizing the Kapitza conductance can be achieved by embedding the nanowires into the films, as the conductance is found to be proportional to the total contact area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4cp00261j | DOI Listing |
Phys Rev Lett
November 2024
Department of Physics, IQIM, California Institute of Technology, Pasadena, California 91125, USA.
External coherent fields can drive quantum materials into nonequilibrium states, revealing exotic properties that are unattainable under equilibrium conditions-an approach known as "Floquet engineering." While optical lasers have commonly been used as the driving fields, recent advancements have introduced nontraditional sources, such as coherent phonon drives. Building on this progress, we demonstrate that driving a metallic quantum nanowire with a coherent wave of terahertz phonons can induce an electronic steady state characterized by a persistent quantized current along the wire.
View Article and Find Full Text PDFGallium nitride-based nanowires (NWs) overcome heteroepitaxy limits, enabling GaN-on-silicon devices, and offer high sensitivity for detection, sensing, and photocatalysis. Additional nanowire coating enhances their performance, protects against photoadsorption, and enables control over structural and optical properties. In this work, we investigate core-shell GaN-(Al/Hf)O nanowires, which meet the aforementioned expectations.
View Article and Find Full Text PDFNanoscale
December 2024
Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, Republic of Korea.
Sci Bull (Beijing)
November 2024
Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
Solar-driven overall conversion of CO and HO into fuels and chemicals shows an ultimate strategy for carbon neutrality yet remains a huge challenge. Herein, an integrated photocatalytic redox architecture of Zn NPs/GaN Nanowires (NWs)/Si is explored for light-driven overall conversion of CO and HO into CH and HO simultaneously without any external sacrificial agents and additives. The as-designed architecture affords a benchmark CH activity of 189 mmol g h with a high selectivity of 93.
View Article and Find Full Text PDFMolecules
November 2024
College of Science, Jinling Institute of Technology, Nanjing 211169, China.
Due to its distinctive structure and unique physicochemical properties, gallium nitride (GaN) has been considered a prospective candidate for lithium storage materials. However, its inferior conductivity and unsatisfactory cycle performance hinder the further application of GaN as a next-generation anode material for lithium-ion batteries (LIBs). To address this, cobalt (Co)-doped GaN (Co-GaN) nanowires have been designed and synthesized by utilizing the chemical vapor deposition (CVD) strategy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!