Single-cell genomics is a powerful tool for exploring the genetic makeup of environmental microorganisms, the vast majority of which are difficult, if not impossible, to cultivate with current approaches. Here we present a comprehensive protocol for obtaining genomes from uncultivated environmental microbes via high-throughput single-cell isolation by FACS. The protocol encompasses the preservation and pretreatment of differing environmental samples, followed by the physical separation, lysis, whole-genome amplification and 16S rRNA-based identification of individual bacterial and archaeal cells. The described procedure can be performed with standard molecular biology equipment and a FACS machine. It takes <12 h of bench time over a 4-d time period, and it generates up to 1 μg of genomic DNA from an individual microbial cell, which is suitable for downstream applications such as PCR amplification and shotgun sequencing. The completeness of the recovered genomes varies, with an average of ∼50%.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nprot.2014.067DOI Listing

Publication Analysis

Top Keywords

obtaining genomes
8
genomes uncultivated
8
uncultivated environmental
8
environmental microorganisms
8
single-cell genomics
8
environmental
4
microorganisms facs-based
4
facs-based single-cell
4
genomics single-cell
4
genomics powerful
4

Similar Publications

The expansion of single-cell analytical techniques has empowered the exploration of diverse biological questions at the individual cells. Droplet-based single-cell RNA sequencing (scRNA-seq) methods have been particularly widely used due to their high-throughput capabilities and small reaction volumes. While commercial systems have contributed to the widespread adoption of droplet-based scRNA-seq, their relatively high cost limits the ability to profile large numbers of cells and samples.

View Article and Find Full Text PDF

From the 1950s to the present, the main tool for obtaining fungal industrial producers of secondary metabolites remains the so-called classical strain improvement (CSI) methods associated with multi-round random mutagenesis and screening for the level of target products. As a result of the application of such techniques, the yield of target secondary metabolites in high-yielding (HY) strains was increased hundreds of times compared to the wild-type (WT) parental strains. However, the events that occur at the molecular level during CSI programs are still unknown.

View Article and Find Full Text PDF

Neuroblastoma is a common malignant tumor in childhood that seriously endangers the health and lives of children, making it essential to find effective prognostic markers to accurately predict their clinical outcomes. The development of high-throughput technology in the biomedical field has made it possible to obtain multi-omics data, whose integration can compensate for missing or unreliable information in a single data source. In this study, we integrated clinical data and two omics data, i.

View Article and Find Full Text PDF

Novel functional eQTL-SNPs associated with susceptibility to occupational pulmonary fibrosis: A multi-stage study.

Ecotoxicol Environ Saf

January 2025

Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215000, China. Electronic address:

Aim: Identifying the common functional single-nucleotide polymorphisms (SNPs) that can both affect the susceptibility to idiopathic pulmonary fibrosis (IPF) and silicosis.

Methods: We first integrated the genome-wide association studies (GWASs) of IPF and silicosis to obtain the shared SNPs. Following this, functional expression quantitative trait locus (eQTL)-SNPs were identified by the GTEx database.

View Article and Find Full Text PDF

Based on network pharmacology and molecular docking methods, this study explored its active compounds and confirmed its potential mechanism of action against Hand-foot skin reaction induced by tumor-targeted drugs. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and UniProt Database were used to obtain the active ingredients and target proteins of Spatholobi Caulis. All hand-foot skin reaction (HFSR)-related targets were obtained with the help of the Human Gene Database, Online Mendelian Inheritance in Humans (OMIM), DisGeNET and DrugBank databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!