AI Article Synopsis

  • ClpXP is an ATP-dependent protease that targets specific proteins, including the essential cell division protein FtsZ, for degradation.
  • Through engineering FtsZ mutant proteins, researchers found two key regions involved in its degradation: one in the unstructured linker region and another near the C-terminus, which overlap with binding sites for other proteins.
  • Mutating these regions increased FtsZ stability, and MinC was shown to inhibit its degradation by ClpXP, indicating the importance of these residues for both degradation and protein interactions.

Article Abstract

ClpXP is a two-component ATP-dependent protease that unfolds and degrades proteins bearing specific recognition signals. One substrate degraded by Escherichia coli ClpXP is FtsZ, an essential cell division protein. FtsZ forms polymers that assemble into a large ring-like structure, termed the Z-ring, during cell division at the site of constriction. The FtsZ monomer is composed of an N-terminal polymerization domain, an unstructured linker region and a C-terminal conserved region. To better understand substrate selection by ClpXP, we engineered FtsZ mutant proteins containing amino acid substitutions or deletions near the FtsZ C-terminus. We identified two discrete regions of FtsZ important for degradation of both FtsZ monomers and polymers by ClpXP in vitro. One region is located 30 residues away from the C-terminus in the unstructured linker region that connects the polymerization domain to the C-terminal region. The other region is near the FtsZ C-terminus and partially overlaps the recognition sites for several other FtsZ-interacting proteins, including MinC, ZipA and FtsA. Mutation of either region caused the protein to be more stable and mutation of both caused an additive effect, suggesting that both regions are important. We also observed that in vitro MinC inhibits degradation of FtsZ by ClpXP, suggesting that some of the same residues in the C-terminal site that are important for degradation by ClpXP are important for binding MinC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983244PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0094964PLOS

Publication Analysis

Top Keywords

ftsz
10
ftsz degradation
8
degradation clpxp
8
cell division
8
polymerization domain
8
unstructured linker
8
linker region
8
ftsz c-terminus
8
degradation ftsz
8
clpxp
7

Similar Publications

Bacterial cytokinesis begins with polymerization of the tubulin homologue FtsZ into a ring-like structure at midcell, the Z-ring, which recruits the late cell division proteins that synthesize the division septum. Assembly of FtsZ is carefully regulated and supported by a dozen conserved cell division proteins. Generally, these proteins are not essential, but removing more than one is in many cases lethal.

View Article and Find Full Text PDF

The widespread emergence of antimicrobial resistance (AMR) is a serious threat to global public health and among Gram-positive cocci, constitutes a priority in the list of AMR-threatening pathogens. To counteract this fundamental problem, the bacterial cell division cycle and the crucial proteins involved in this process emerged as novel attractive targets. FtsZ is an essential cell division protein, and FtsZ inhibitors, especially the benzamide derivatives, have been exploited in the last decade.

View Article and Find Full Text PDF

A Predicted Helix-Turn-Helix Core Is Critical for Bacteriophage Kil Peptide to Disrupt Cell Division.

Antibiotics (Basel)

January 2025

Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA.

: FtsZ, a eukaryotic tubulin homolog and an essential component of the bacterial divisome, is the target of numerous antimicrobial compounds as well as proteins and peptides, most of which inhibit FtsZ polymerization dynamics. We previously showed that the Kil peptide from bacteriophage λ inhibits cell division by disrupting FtsZ ring assembly, and this inhibition requires the presence of the essential FtsZ membrane anchor protein ZipA. : To investigate Kil's molecular mechanism further, we employed deletions, truncations, and molecular modeling to identify the minimal residues necessary for its activity.

View Article and Find Full Text PDF

Bacterial cell division and plant chloroplast division require selfassembling Filamentous temperature-sensitive Z (FtsZ) proteins. FtsZ proteins are GTPases sharing structural and biochemical similarities with eukaryotic tubulin. In the moss Physcomitrella, the morphology of the FtsZ polymer networks varies between the different FtsZ isoforms.

View Article and Find Full Text PDF

The current study first describes the chemical profiles of essential oils from Vietnamese Chromolaena odorata fresh stem barks and leaves. The gas chromatography-flame inonization detection/mass spectrometry (GC-FID/MS) analysis revealed that α-pinene (6.97-38.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!