We introduce shell cross-linked protein/quantum dot (QD) hybrid nanocapsules as a serum-stable systemic delivery nanocarrier for tumor-targeted in vivo bio-imaging applications. Highly luminescent, heavy-metal-free Cu0.3InS2/ZnS (CIS/ZnS) core-shell QDs are synthesized and mixed with amine-reactive six-armed poly(ethylene glycol) (PEG) in dichloromethane. Emulsification in an aqueous solution containing human serum albumin (HSA) results in shell cross-linked nanocapsules incorporating CIS/ZnS QDs, exhibiting high luminescence and excellent dispersion stability in a serum-containing medium. Folic acid is introduced as a tumor-targeting ligand. The feasibility of tumor-targeted in vivo bio-imaging is demonstrated by measuring the fluorescence intensity of several major organs and tumor tissue after an intravenous tail vein injection of the nanocapsules into nude mice. The cytotoxicity of the QD-loaded HSA-PEG nanocapsules is also examined in several types of cells. Our results show that the cellular uptake of the QDs is critical for cytotoxicity. Moreover, a significantly lower level of cell death is observed in the CIS/ZnS QDs compared to nanocapsules loaded with cadmium-based QDs. This study suggests that the systemic tumor targeting of heavy-metal-free QDs using shell cross-linked HSA-PEG hybrid nanocapsules is a promising route for in vivo tumor diagnosis with reduced non-specific toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/25/17/175702DOI Listing

Publication Analysis

Top Keywords

hybrid nanocapsules
12
shell cross-linked
12
tumor-targeted vivo
8
vivo bio-imaging
8
cis/zns qds
8
nanocapsules
7
qds
6
serum-stable quantum
4
quantum dot-protein
4
dot-protein hybrid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!