Background: Although the participation of the electrogenic sodium/bicarbonate cotransporter (NBCe1) in the recovery from an intracellular acid load is recognized, its role in ischemia-reperfusion is still unclear.
Methods And Results: Our objective was to assess the role of NBCe1 in reperfusion injury. We use selective functional antibodies against extracellular loop 3 (a-L3) and loop 4 (a-L4) of NBCe1. a-L3 inhibits and a-L4 stimulates NBCe1 activity. Isolated rat hearts were submitted to 40 min of coronary occlusion and 1 h of reperfusion. a-L3, a-L4 or S0859--selective Na(+)-HCO3(-) co-transport inhibitor--were administered during the initial 10 min of reperfusion. The infarct size (IS) was measured by triphenyltetrazolium chloride staining technique. Postischemic systolic and diastolic functions were also assessed. a-L3 and S0859 treatments decreased significantly (P < .05) the IS (16 ± 3% for a-L3 vs. 32 ± 5% in hearts treated with control nonimmune serum and 19 ± 3% for S0859 vs. 39 ± 2% in untreated hearts). Myocardial function during reperfusion improved after a-L3 treatment, but it was not modified by S0859. The infusion of a-L4 did not modify neither the IS nor myocardial function.
Conclusions: The NBCe1 hyperactivity during reperfusion leads to Na(+) and Ca(2+) loading, conducing to Ca(2+) overload and myocardial damage. Consistently, we have shown herein that the selective NBCe1 blockade with a-L3 exerted cardioprotection. This beneficial action strongly suggests that NBCe1 could be a potential target for the treatment of coronary disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carpath.2014.03.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!