Platelet adhesion to a polyurethane urea surface is a precursor to thrombus formation within blood-contacting cardiovascular devices, and platelets have been found to adhere strongly to polyurethane surfaces below a shear rate of approximately 500 s(-1). The aim of the current work is to determine the properties of platelet adhesion to the polyurethane urea surface as a function of time-varying shear exposure. A rotating disk system was used to study the influence of steady and pulsatile flow conditions (e.g., cardiac inflow and sawtooth waveforms) for platelet adhesion to the biomaterial surface. All experiments were conducted with the same root mean square angular rotation velocity (29.63 rad/s) and waveform period. The disk was rotated in platelet-rich bovine plasma for 2 h, with adhesion quantified by confocal microscopy measurements of immunofluorescently labeled bovine platelets. Platelet adhesion under pulsating flow was found to decay exponentially with increasing shear rate. Adhesion levels were found to depend upon peak platelet flux and shear rate, regardless of rotational waveform. In combination with flow measurements, these results may be useful for predicting regions susceptible to thrombus formation within ventricular assist devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192112PMC
http://dx.doi.org/10.1111/aor.12296DOI Listing

Publication Analysis

Top Keywords

platelet adhesion
20
adhesion polyurethane
12
polyurethane urea
12
shear rate
12
pulsatile flow
8
flow conditions
8
urea surface
8
thrombus formation
8
platelet
6
adhesion
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!