A highly sensitive label-free sensor for Mercury ion (Hg²⁺) by inhibiting thioflavin T as DNA G-quadruplexes fluorescent inducer.

Talanta

State Key Laboratory for Chemo/biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China. Electronic address:

Published: May 2014

DNA sequences with guanine repeats can be induced to form G-quartets that adopt G-quadruplex structures in the presence of thioflavin T (ThT). ThT plays a dual role of inducing DNA sequences to fold into quadruplex structures and of sensing the change by its remarkable fluorescence enhancement. ThT binding to the DNA sequences with guanine repeats showed highly specific fluorescence enhancement compared with single/double-stranded DNA. In this work, we have utilized the conformational switch from G-quadruplex complex induced by fluorogenic dye ThT to Hg(2+) mediated T-Hg-T double-stranded DNA formation, thereby pioneering a facile approach to detect Hg(2+) with fluorescence spectrometry. Through this approach, Hg(2+) in aqueous solutions can be detected at 5 nM with fluorescence spectrometry in a facile way, with high selectivity against other metal ions. These results indicate the introduced label-free method for fluorescence spectrometric Hg(2+) detection is simple, quantitative, sensitive, and highly selective.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2014.01.033DOI Listing

Publication Analysis

Top Keywords

dna sequences
12
sequences guanine
8
guanine repeats
8
fluorescence enhancement
8
fluorescence spectrometry
8
dna
6
fluorescence
5
highly sensitive
4
sensitive label-free
4
label-free sensor
4

Similar Publications

Purpose: The aim of the present study was to establish a SYBR Green-based real-time PCR assay for detection of the Nc5 segment from the Neospora caninum genome.

Methods: The oligonucleotides sequences targeting the Nc5 gene previously reported and designed in-house were validated. Two Primer sets were evaluated and tested in four different combinations.

View Article and Find Full Text PDF

Limnobacter olei sp. nov., a Novel Diesel-Degrading Bacterium Isolated from Oil-Contaminated Soil.

Curr Microbiol

January 2025

Jiangsu Longhuan Environmental Science Co. LTD, Changzhou, 213164, China.

A bacterial strain P1, capable of degrading diesel and converting thiosulfate to sulfate was isolated from an oil-contaminated soil sample. The cells were Gram-stain-negative, slightly curved rods and motile with a single polar flagellum. Growth of the strain was observed at 4-45 °C (optimum at 28 °C), at pH 4.

View Article and Find Full Text PDF

Transcription factors (TFs) recognize specific bases within their DNA-binding motifs, with each base contributing nearly independently to total binding energy. However, the energetic contributions of particular dinucleotides can deviate strongly from the additive approximation, indicating that some TFs can specifically recognize DNA dinucleotides. Here we solved high-resolution (<1 Å) structures of MYF5 and BARHL2 bound to DNAs containing sets of dinucleotides that have different affinities to the proteins.

View Article and Find Full Text PDF

The chloroplast (cp) genome is a widely used tool for exploring plant evolutionary relationships, yet its effectiveness in fully resolving these relationships remains uncertain. Integrating cp genome data with nuclear DNA information offers a more comprehensive view but often requires separate datasets. In response, we employed the same raw read sequencing data to construct cp genome-based trees and nuclear DNA phylogenetic trees using Read2Tree, a cost-efficient method for extracting conserved nuclear gene sequences from raw read data, focusing on the Aurantioideae subfamily, which includes Citrus and its relatives.

View Article and Find Full Text PDF

Genomic language models: opportunities and challenges.

Trends Genet

January 2025

Computer Science Division, University of California, Berkeley, CA, USA; Department of Statistics, University of California, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, CA, USA. Electronic address:

Large language models (LLMs) are having transformative impacts across a wide range of scientific fields, particularly in the biomedical sciences. Just as the goal of natural language processing is to understand sequences of words, a major objective in biology is to understand biological sequences. Genomic language models (gLMs), which are LLMs trained on DNA sequences, have the potential to significantly advance our understanding of genomes and how DNA elements at various scales interact to give rise to complex functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!