Optimized rod length of polyplex micelles for maximizing transfection efficiency and their performance in systemic gene therapy against stroma-rich pancreatic tumors.

Biomaterials

Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Electronic address:

Published: July 2014

Poly(ethylene glycol) (PEG) modification onto a gene delivery carrier for systemic application results in a trade-off between prolonged blood circulation and promoted transfection because high PEG shielding is advantageous in prolonging blood retention, while it is disadvantageous with regard to obtaining efficient transfection owing to hampered cellular uptake. To tackle this challenging issue, the present investigation focused on the structure of polyplex micelles (PMs) obtained from PEG-poly(l-lysine) (PEG-PLys) block copolymers characterized as rod-shaped structures to seek the most appreciable formulation. Comprehensive investigations conducted with particular focus on stability, PEG crowdedness, and rod length, controlled by varying PLys segment length, clarified the effect of these structural features, with particular emphasis on rod length as a critical parameter in promoting cellular uptake. PMs with rod length regulated below the critical threshold length of 200 nm fully exploited the benefits of cross-linking and the cyclic RGD ligand, consequently, exhibiting remarkable transfection efficiency comparable with that of ExGen 500 and Lipofectamine(®) LTX with PLUS™ even though PMs were PEG shielded. The identified PMs exhibited significant antitumor efficacy in systemic treatment of pancreatic adenocarcinoma, whereas PMs with rod length above 200 nm exhibited negligible antitumor efficacy despite a superior blood circulation property, thereby highlighting the significance of controlling the rod length of PMs to promote gene transduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2014.03.037DOI Listing

Publication Analysis

Top Keywords

rod length
24
length
8
polyplex micelles
8
transfection efficiency
8
blood circulation
8
cellular uptake
8
pms rod
8
length 200 nm
8
antitumor efficacy
8
pms
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!