Eur J Neurosci
Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560 012, India.
Published: July 2014
The subiculum, considered to be the output structure of the hippocampus, modulates information flow from the hippocampus to various cortical and sub-cortical areas such as the nucleus accumbens, lateral septal region, thalamus, nucleus gelatinosus, medial nucleus and mammillary nuclei. Tonic inhibitory current plays an important role in neuronal physiology and pathophysiology by modulating the electrophysiological properties of neurons. While the alterations of various electrical properties due to tonic inhibition have been studied in neurons from different regions, its influence on intrinsic subthreshold resonance in pyramidal excitatory neurons expressing hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is not known. Using pharmacological agents, we show the involvement of α5βγ GABAA receptors in the picrotoxin-sensitive tonic current in subicular pyramidal neurons. We further investigated the contribution of tonic conductance in regulating subthreshold electrophysiological properties using current clamp and dynamic clamp experiments. We demonstrate that tonic GABAergic inhibition can actively modulate subthreshold properties, including resonance due to HCN channels, which can potentially alter the response dynamics of subicular pyramidal neurons in an oscillating neuronal network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ejn.12581 | DOI Listing |
J Neurosci
December 2024
Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
The subiculum represents a crucial brain pivot in regulating seizure generalization in temporal lobe epilepsy (TLE), primarily through synergy of local GABAergic and long-projecting glutamatergic signaling. However, little is known about how subicular GABAergic interneurons are involved in a cell-type-specific way. Here, employing Ca fiber photometry, retrograde monosynaptic viral tracing and chemogenetics in epilepsy models of both male and female mice, we elucidate circuit reorganization patterns mediated by subicular cell-type-specific interneurons and delineate their functional disparities in seizure modulation in TLE.
View Article and Find Full Text PDFMol Brain
November 2024
Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Temporal lobe epilepsy (TLE) is the most common form of medically-intractable epilepsy. Subicular hyperexcitability is frequently observed with TLE, presumably caused by impaired inhibition of local excitatory neurons. Here, we evaluated the effectiveness of silencing subicular pyramidal neurons to treat a rodent model of TLE.
View Article and Find Full Text PDFAnat Sci Int
October 2024
Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
The subiculum is one of the major output structures of the hippocampal formation and is an important brain region for memory. We have previously reported that the subiculum of rodents can be morphologically divided into its temporal (ventral) two-thirds and the septal (dorsal) third and that the former can be further subdivided into the distal (Sub1) and proximal (Sub2) regions, on a basis of immunohistochemical localizations of several Sub2-specific proteins. However, it remains unclear whether detailed structural organization found in the temporal subiculum is applicable to the septal subiculum.
View Article and Find Full Text PDFJ Physiol
September 2024
Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, USA.
The subiculum is a key region of the brain involved in the initiation of pathological activity in temporal lobe epilepsy, and local GABAergic inhibition is essential to prevent subicular-originated epileptiform discharges. Subicular pyramidal cells may be easily distinguished into two classes based on their different firing patterns. Here, we have compared the strength of the GABAa receptor-mediated inhibitory postsynaptic currents received by regular- vs.
View Article and Find Full Text PDFFront Cell Neurosci
April 2024
Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany.
The balance between excitation and inhibition is essential to the proper function of cortical circuits. To maintain this balance during dynamic network activity, modulation of the strength of inhibitory synapses is a central requirement. In this study, we aimed to characterize perisomatic inhibition and its plasticity onto pyramidal cells (PCs) in the subiculum, the main output region of the hippocampus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.