It is well established that atrial fibrillation (AF) is far more common in elderly humans. Autonomic activation is thought to be an operative mechanism for AF propensity. The aim of the study was to investigate the impact of age on atrial tachyarrhythmia induction in a rabbit model. Six old (aged 4-6 years) and 9 young (aged 3-4 months) New Zealand white rabbits were subjected to a catheter-based electrophysiological study. Atrial tachyarrhythmia susceptibility was tested by burst pacing before and after infusion of increasing concentrations of acetylcholine. Both young and old rabbits were in normal sinus rhythm at the beginning of the infusion/burst pacing protocol. The old rabbits had faster heart rates and a marked increase in atrial tachyarrhythmias compared to the young rabbits. Nonsustained and sustained AF events were more frequent in the old rabbits. No significant fibrosis was observed in the atria of either young or old rabbits. In conclusion, the old rabbits have a greater propensity for induction of AF. The significantly faster heart rates in the old rabbits suggest that dominant sympathetic activity may play an important role in the propensity for AF in this group.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955625PMC
http://dx.doi.org/10.1155/2014/684918DOI Listing

Publication Analysis

Top Keywords

young rabbits
16
rabbits
9
atrial fibrillation
8
atrial tachyarrhythmia
8
faster heart
8
heart rates
8
atrial
5
young
5
propensity
4
propensity inducing
4

Similar Publications

Manganese Galvanic Cells Intervene in Tumor Metabolism to Reinforce cGAS-STING Activation for Bidirectional Synergistic Hydrogen-Immunotherapy.

Adv Mater

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.

The cGAS-STING pathway is pivotal in initiating antitumor immunity. However, tumor metabolism, particularly glycolysis, negatively regulates the activation of the cGAS-STING pathway. Herein, Mn galvanic cells (MnG) are prepared via liquid-phase exfoliation and in situ galvanic replacement to modulate tumor metabolism, thereby enhancing cGAS-STING activation for bidirectional synergistic H-immunotherapy.

View Article and Find Full Text PDF

Background: Malignant salivary gland tumors (SGTs) present diagnostic challenges and limited treatment options. This study aims to determine the proportion of malignant SGTs overexpressing the androgen receptor (AR) by immunohistochemistry (IHC) and its association to age, sex, anatomical site, histopathological subtype and grade which may inform customized treatment approaches.

Methodology: This was a retrospective cross-sectional analytical study of archived paraffin embedded tissue blocks of malignant SGTs diagnosed at MNH Central Pathology Laboratory (CPL) from January 2019 to December 2022.

View Article and Find Full Text PDF

The mechanism of fibrosis at the patella-patellar tendon junction (PPTJ) was investigated using a rabbit overuse jumping model. Thiry-two female New Zealand White rabbits were randomly divided into control and jumping groups, and each group was further divided into four groups at 2, 4, 6, and 8 weeks. The rabbits in the jumping group jumped 150 times per day, 5 days per week.

View Article and Find Full Text PDF

Enhanced Ocular Bioavailability and Prolonged Duration via Hydrophilic Surface Nanocomposite Vesicles for Topical Drug Administration.

Pharmaceutics

November 2024

Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China.

Background: Internal ocular diseases, such as macular edema, uveitis, and diabetic macular edema require precise delivery of therapeutic agents to specific regions within the eye. However, the eye's complex anatomical structure and physiological barriers present significant challenges to drug penetration and distribution. Traditional eye drops suffer from low bioavailability primarily due to rapid clearance mechanisms.

View Article and Find Full Text PDF

Powder-based hemostatic materials have offered unprecedented opportunities for the effective sealing and repair of irregularly shaped wounds and high-pressure, noncompressible arterial bleeding wounds caused by surgeries, traffic accidents, and wartime injuries. However, inadequate adhesion to bleeding wounds and poor hemostasis in biological tissues remains challenging. Herein, we report a self-gelling hemostatic powder based on polyacrylic acid/polyethyleneimine/polyethylene glycol (named PPG) for rapid hemostasis and effective antibacterial ability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!