Dennd3 functions as a guanine nucleotide exchange factor for small GTPase Rab12 in mouse embryonic fibroblasts.

J Biol Chem

From the Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan

Published: May 2014

Small GTPase Rab12 regulates mTORC1 (mammalian target of rapamycin complex 1) activity and autophagy through controlling PAT4 (proton/amino acid transporter 4) trafficking from recycling endosomes to lysosomes, where PAT4 is degraded. However, the precise regulatory mechanism of the Rab12-mediated membrane trafficking pathway remained to be determined because a physiological Rab12-GEF (guanine nucleotide exchange factor) had yet to be identified. In this study we performed functional analyses of Dennd3, which has recently been shown to possess a GEF activity toward Rab12 in vitro. The results showed that knockdown of Dennd3 in mouse embryonic fibroblast cells caused an increase in the amount of PAT4 protein, the same as Rab12 knockdown did, and knockdown of Dennd3 and overexpression of Dennd3 were found to result in an increase and a decrease, respectively, in the intracellular amino acid concentration. Dennd3 overexpression was also found to reduce mTORC1 activity and promoted autophagy in a Rab12-dependent manner. Unexpectedly, however, Dennd3 knockdown had no effect on mTORC1 activity or autophagy despite increasing the intracellular amino acid concentration. Further study showed that Dennd3 knockdown reduced Akt activity, and the reduction in Akt activity is likely to have canceled out amino acid-induced mTORC1 activation through PAT4. These findings indicated that Dennd3 not only functions as a Rab12-GEF but also modulates Akt signaling in mouse embryonic fibroblast cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022869PMC
http://dx.doi.org/10.1074/jbc.M113.546689DOI Listing

Publication Analysis

Top Keywords

mouse embryonic
12
dennd3
9
dennd3 functions
8
guanine nucleotide
8
nucleotide exchange
8
exchange factor
8
small gtpase
8
gtpase rab12
8
activity autophagy
8
knockdown dennd3
8

Similar Publications

Single-cell RNA-seq identifies protracted mouse germline X chromosome reactivation dynamics directed by a PRC2-dependent mechanism.

Dev Cell

January 2025

King's College London, Centre for Gene Therapy and Regenerative Medicine, School of Basic & Medical Biosciences, Faculty of Life Sciences and Medicine, London, UK; King's College London, Guy's Hospital Assisted Conception Unit, Department of Women and Children's Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, London, UK. Electronic address:

Female primordial germ cells (PGCs) undergo X chromosome reactivation (XCR) during genome-wide reprogramming. XCR kinetics and dynamics are poorly understood at a molecular level. Here, we apply single-cell RNA sequencing and chromatin profiling on germ cells from F mouse embryos, performing a precise appraisal of XCR spanning from migratory-stage PGCs to gonadal germ cells.

View Article and Find Full Text PDF

Ubiquitination-deficit of Cnot4 impairs the capacity of proliferation and differentiation in mouse embryonic stem cells.

Biochem Biophys Res Commun

December 2024

Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China. Electronic address:

Article Synopsis
  • Neurodevelopmental abnormalities contribute to various neurological disorders, with ubiquitination being crucial for embryonic development and neurodevelopment.
  • Cnot4, an E3-ubiquitin ligase, was studied for its role in mouse embryonic stem cells (ESCs) where its ubiquitination-deficit led to decreased proliferation and increased ectodermal differentiation.
  • RNA sequencing revealed that genes linked to glucose metabolism and calcium signaling were affected, indicating Cnot4's significant role in regulating ESC behavior through ubiquitination.
View Article and Find Full Text PDF

3-methyl-4-nitrophenol disturbs the maternal-to-zygotic transition of early embryos by damaging mitochondrial function and histone modification.

Ecotoxicol Environ Saf

January 2025

Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China. Electronic address:

3-methyl-4-nitrophenol (PNMC), a chemical prevalent in various industries for drug, dye, and leather production, also serves as a primary byproduct of organophosphate insecticides. Despite its global recognition as an endocrine disruptor with documented reproductive toxicity, its detrimental impact on preimplantation embryonic development has yet to be thoroughly investigated. In this study, through the in vitro culture of mice embryos, it was initially observed that even low concentrations of PNMC exposure led to a significant reduction in blastocyst formation and a sharp decline in the ratio of inner cell mass within the blastocysts.

View Article and Find Full Text PDF

Transgene expression in stem cells is a powerful means of regulating cellular properties and differentiation into various cell types. However, existing vectors for transgene expression in stem cells suffer from limitations such as the need for genomic integration, the transient nature of gene expression, and the inability to temporally regulate transgene expression, which hinder biomedical and clinical applications. Here we report a new class of RNA virus-based vectors for scalable and integration-free transgene expression in mouse embryonic stem cells (mESCs).

View Article and Find Full Text PDF

Background: Maternal obesity detrimentally affects placental function and fetal development. Both alternate-day fasting (ADF) and time-restricted feeding (TRF) are dietary interventions that can improve metabolic health, yet their comparative effects on placental function and fetal development remain unexplored.

Objectives: This study aims to investigate the effects of ADF and TRF on placental function and fetal development during maternal consumption of a high-fat diet (HFD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!