Loss of Ostm1 leads to the most severe form of osteopetrosis in mice and humans. Because functional rescue of the osteopetrotic defect in these mice extended their lifespan from ∼3 weeks to 6 weeks, this unraveled a second essential role of Ostm1. We discovered that Ostm1 is highly expressed in the mouse brain in neurons, microglia, and astrocytes. At 3-4 weeks of age, mice with Ostm1 loss showed 3-10-fold stimulation of reactive gliosis, with an increased astrocyte cell population and microglia activation. This inflammatory response was associated with marked retinal photoreceptor degeneration and massive neuronal loss in the brain. Intracellular characterization of neurons revealed abnormal storage of carbohydrates, lipids, and ubiquitinated proteins, combined with marked accumulation of autophagosomes that causes frequent axonal swelling. Stimulation of autophagy was provided by specific markers and by significant down-regulation of the mammalian target of rapamycin signaling, identifying a cellular pathologic mechanism. A series of transgenic mouse lines specifically targeted to distinct central nervous system cell subpopulations determined that Ostm1 has a primary and autonomous role in neuronal homeostasis. Complete functional complementation demonstrated that the development of severe and rapid neurodegeneration in these mice is independent of the hematopoietic lineage and has clinical implications for treatment of osteopetrosis. Importantly, this study establishes a novel neurodegenerative mouse model critical for understanding the multistep pathogenic cascade of cellular autophagy disorders toward therapeutic strategy design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022863 | PMC |
http://dx.doi.org/10.1074/jbc.M113.537233 | DOI Listing |
Sci Rep
January 2025
Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
Long noncoding RNAs (lncRNAs) have been recognized as essential regulators in various human malignancies. Hundreds of lncRNAs were known to be abnormally expressed in renal cell carcinoma (RCC) through a lncRNA expression microarray, among which lncRNA OSTM1 antisense RNA 1(OSTM1-AS1) was revealed as one of the most abundant lncRNAs. However, the function of OSTM1-AS1 in RCC remains unknown.
View Article and Find Full Text PDFJ Biol Chem
July 2024
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany. Electronic address:
Together with its β-subunit OSTM1, ClC-7 performs 2Cl/H exchange across lysosomal membranes. Pathogenic variants in either gene cause lysosome-related pathologies, including osteopetrosis and lysosomal storage. CLCN7 variants can cause recessive or dominant disease.
View Article and Find Full Text PDFJ Cell Sci
February 2024
Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
Microglia, professional phagocytic cells of the brain, rely upon the appropriate activation of lysosomes to execute their immune and clearance functions. Lysosomal activity is, in turn, modulated by a complex network of over 200 membrane and accessory proteins that relay extracellular cues to these key degradation centers. The ClC-7 chloride (Cl-)-proton (H+) antiporter (also known as CLCN7) is localized to the endolysosomal compartments and mutations in CLCN7 lead to osteopetrosis and neurodegeneration.
View Article and Find Full Text PDFBiomolecules
December 2023
Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany.
ClC-7 is a ubiquitously expressed voltage-gated Cl/H exchanger that critically contributes to lysosomal ion homeostasis. Together with its β-subunit Ostm1, ClC-7 localizes to lysosomes and to the ruffled border of osteoclasts, where it supports the acidification of the resorption lacuna. Loss of ClC-7 or Ostm1 leads to osteopetrosis accompanied by accumulation of storage material in lysosomes and neurodegeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!