A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Semiconducting carbon nanotube aerogel bulk heterojunction solar cells. | LitMetric

Using a novel two-step fabrication scheme, we create highly semiconducting-enriched single-walled carbon nanotube (sSWNT) bulk heterojunctions (BHJs) by first creating highly porous interconnected sSWNT aerogels (sSWNT-AEROs), followed by back-filling the pores with [6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM). We demonstrate sSWNT-AERO structures with density as low as 2.5 mg cm(-3), porosity as high as 99.8%, and diameter of sSWNT fibers ≤ 10 nm. Upon spin coating with PC(71)BM, the resulting sSWNT-AERO-PC(71)BM nanocomposites exhibit highly quenched sSWNT photoluminescence, which is attributed to the large interfacial area between the sSWNT and PC(71)BM phases, and an appropriate sSWNT fiber diameter that matches the inter-sSWNT exciton migration length. Employing the sSWNT-AERO-PC(71)BM BHJ structure, we report optimized solar cells with a power conversion efficiency of 1.7%, which is exceptional among polymer-like solar cells in which sSWNTs are designed to replace either the polymer or fullerene component. A fairly balanced photocurrent is achieved with 36% peak external quantum efficiency (EQE) in the visible and 19% peak EQE in the near-infrared where sSWNTs serve as electron donors and photoabsorbers. Our results prove the effectiveness of this new method in controlling the sSWNT morphology in BHJ structures, suggesting a promising route towards highly efficient sSWNT photoabsorbing solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201400696DOI Listing

Publication Analysis

Top Keywords

solar cells
16
carbon nanotube
8
sswnt
8
semiconducting carbon
4
nanotube aerogel
4
aerogel bulk
4
bulk heterojunction
4
solar
4
heterojunction solar
4
cells
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!