KCNQ2 and KCNQ3 potassium channels have emerged as central regulators of pyramidal neuron excitability and spiking behavior. However, despite an abundance of evidence demonstrating that KCNQ2/3 heteromers underlie critical potassium conductances, it is unknown whether KCNQ2, KCNQ3, or both are obligatory for maintaining normal pyramidal neuron excitability. Here, we demonstrate that conditional deletion of Kcnq2 from cerebral cortical pyramidal neurons in mice results in abnormal electrocorticogram activity and early death, whereas similar deletion of Kcnq3 does not. At the cellular level, Kcnq2-null, but not Kcnq3-null, CA1 pyramidal neurons show increased excitability manifested as a decreased medium afterhyperpolarization and a longer-lasting afterdepolarization. As a result, these Kcnq2-deficient neurons are hyperexcitable, responding to current injections with an increased number and frequency of action potentials. Biochemically, the Kcnq2 deficiency secondarily results in a substantial loss of KCNQ3 and KCNQ5 protein levels, whereas loss of Kcnq3 only leads to a modest reduction of other KCNQ channels. Consistent with this finding, KCNQ allosteric activators can still markedly dampen neuronal excitability in Kcnq3-null pyramidal neurons, but have only weak effects in Kcnq2-null pyramidal neurons. Together, our data reveal the indispensable function of KCNQ2 channels at both the cellular and systems levels, and demonstrate that pyramidal neurons have near normal excitability in the absence of KCNQ3 channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983807 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.3919-13.2014 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 22, Kerala, India.
The rise of various diseases demands the development of new agents with antioxidant, antimicrobial, anti-inflammatory, enzyme-inhibiting, and cytotoxic properties. In this study, heterocyclic Schiff base complexes of Cu(II) featuring a benzo[]thiophene moiety were synthesized and their biological activities evaluated. The complexes were characterized using FT-IR, UV-Vis, and EPR spectroscopy, TG-DTG analysis, magnetic moment measurements, molar conductivity measurements, and elemental analyses.
View Article and Find Full Text PDFJ Neurol
January 2025
Centre de Génétique Humaine, Centre Hospitalier Universitaire de Besançon, Besançon, France.
Introduction: The MAPT gene encodes Tau, a protein mainly expressed by neurons. Tau protein plays an important role in cerebral microtubule polymerization and stabilization, in axonal transport and synaptic plasticity. Heterozygous pathogenic variation in MAPT are involved in a spectrum of autosomal dominant neurodegenerative diseases known as taupathies, including Alzheimer's disease, Pick's disease, fronto-temporal dementia, cortico-basal degeneration and progressive supranuclear palsy.
View Article and Find Full Text PDFSci Adv
January 2025
Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Pediatrics, Peking University First Hospital, Beijing, China.
Introduction: Neonatal seizures are the most common clinical manifestation of neurological dysfunction in newborns, with an incidence ranging from 1 to 5‰. However, the therapeutic efficacy of current pharmacological treatments remains suboptimal. This study aims to utilize genetically modified hamsters with hypertriglyceridaemia (HTG) to investigate the effects of elevated triglycerides on neuronal excitability and to elucidate the underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!