Apical and basolateral determinants specify and maintain membrane domains in epithelia. Here, we identify new roles for two apical surface proteins - Cadherin 99C (Cad99C) and Stranded at Second (SAS) - in conferring apical character in Drosophila tubular epithelia. Cad99C, the Drosophila ortholog of human Usher protocadherin PCDH15, is expressed in several embryonic tubular epithelial structures. Through loss-of-function and overexpression studies, we show that Cad99C is required to regulate cell rearrangement during salivary tube elongation. We further show that overexpression of either Cad99C or SAS causes a dramatic increase in apical membrane at the expense of other membrane domains, and that both proteins can do this independently of each other and independently of mislocalization of the apical determinant Crumbs (Crb). Overexpression of Cad99C or SAS results in similar, but distinct effects, suggesting both shared and unique roles for these proteins in conferring apical identity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994772 | PMC |
http://dx.doi.org/10.1242/dev.104166 | DOI Listing |
J Cell Sci
July 2016
The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
In epithelial tissues, polarisation of microtubules and actin microvilli occurs along the apical-basal axis of each cell, yet how these cytoskeletal polarisation events are coordinated remains unclear. Here, we examine the hierarchy of events during cytoskeletal polarisation in Drosophila melanogaster epithelia. Core apical-basal polarity determinants polarise the spectrin cytoskeleton to recruit the microtubule-binding proteins Patronin (CAMSAP1, CAMSAP2 and CAMSAP3 in humans) and Shortstop [Shot; MACF1 and BPAG1 (also known as DST) in humans] to the apical membrane domain.
View Article and Find Full Text PDFCell Host Microbe
February 2015
School of Biological Science, Seoul National University and National Creative Research Initiative Center for Symbiosystem, Seoul National University, Seoul 151-742, South Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, South Korea. Electronic address:
Genetic studies in Drosophila have demonstrated that generation of microbicidal reactive oxygen species (ROS) through the NADPH dual oxidase (DUOX) is a first line of defense in the gut epithelia. Bacterial uracil acts as DUOX-activating ligand through poorly understood mechanisms. Here, we show that the Hedgehog (Hh) signaling pathway modulates uracil-induced DUOX activation.
View Article and Find Full Text PDFDevelopment
May 2014
Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2196, USA.
Apical and basolateral determinants specify and maintain membrane domains in epithelia. Here, we identify new roles for two apical surface proteins - Cadherin 99C (Cad99C) and Stranded at Second (SAS) - in conferring apical character in Drosophila tubular epithelia. Cad99C, the Drosophila ortholog of human Usher protocadherin PCDH15, is expressed in several embryonic tubular epithelial structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!