Hepatitis C virus (HCV) infection is associated with hepatic iron overload and elevated serum iron that correlate to poor antiviral responses. Hepcidin (HAMP), a 25-aa cysteine-rich liver-specific peptide, controls iron homeostasis. Its expression is up-regulated in inflammation and iron excess. HCV-mediated hepcidin regulation remains controversial. Chronic HCV patients possess relatively low hepcidin levels; however, elevated HAMP mRNA has been reported in HCV core transgenic mice and HCV replicon-expressing cells. We investigated the effect of HCV core protein on HAMP gene expression and delineated the complex interplay of molecular mechanisms involved. HCV core protein up-regulated HAMP promoter activity, mRNA, and secreted protein levels. Enhanced promoter activity was abolished by co-transfections of core with HAMP promoter constructs containing mutated/deleted BMP and STAT binding sites. Dominant negative constructs, pharmacological inhibitors, and silencing experiments against STAT3 and SMAD4 confirmed the participation of both pathways in HAMP gene regulation by core protein. STAT3 and SMAD4 expression levels were found increased in the presence of HCV core, which orchestrated SMAD4 translocation into the nucleus and STAT3 phosphorylation. To further understand the mechanisms governing the core effect, the role of the JAK/STAT-activating kinase CK2 was investigated. A CK2-dominant negative construct, a CK2-specific inhibitor, and RNAi interference abrogated the core-induced increase on HAMP promoter activity, mRNA, and protein levels, while CK2 acted in synergy with core to significantly enhance HAMP gene expression. Therefore, HCV core up-regulates HAMP gene transcription via a complex signaling network that requires both SMAD/BMP and STAT3 pathways and CK2 involvement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11114079 | PMC |
http://dx.doi.org/10.1007/s00018-014-1621-4 | DOI Listing |
J Funct Biomater
January 2025
Institute for Bioscience and Biotechnology Research, University of Maryland Rockville, Rockville, MD 20850, USA.
Hepatitis C virus (HCV) is a major public health concern, and the development of an effective HCV vaccine plays an important role in the effort to prevent new infections. Supramolecular co-assembly and co-presentation of the HCV envelope E1E2 heterodimer complex and core protein presents an attractive vaccine design strategy for achieving effective humoral and cellular immunity. With this objective, the two antigens were non-covalently assembled with an immunostimulant (TLR 7/8 agonist) into virus-mimicking polymer nanocomplexes (VMPNs) using a biodegradable synthetic polyphosphazene delivery vehicle.
View Article and Find Full Text PDFBMC Biotechnol
January 2025
Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt.
Background: Egypt has the highest global prevalence of Hepatitis C Virus (HCV) infection, particularly of genotype 4. The development of a prophylactic vaccine remains crucial for HCV eradication, yet no such vaccine currently exists due to the vaccine development challenges. The ability of Virus-Like Particles (VLPs) to mimic the native virus and incorporate neutralizing and conformational epitopes, while effectively engaging both humoral and cellular immune responses, makes them a promising approach to addressing the challenges in HCV vaccine development.
View Article and Find Full Text PDFLiver Int
February 2025
Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, UK.
Background: Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) encompasses a spectrum of histological conditions ranging from simple steatosis to fibrosing steatohepatitis, and is a risk factor for cardiovascular diseases (CVD). While oxidised apolipoproteins A and B have been linked to obesity and CVD, the association between other oxidised apolipoproteins and MASLD is yet to be established. To fill this gap, we characterised the circulating serum peptidome of patients with MASLD.
View Article and Find Full Text PDFEuroasian J Hepatogastroenterol
December 2024
Department of Microbiology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India.
Introduction: One of the main causes of primary hepatocellular carcinoma and chronic hepatitis is the hepatitis C virus (HCV), with significant variability in its genotypes affecting pathogenicity and treatment outcomes. In India, prevalence ranges from 0.5 to 1.
View Article and Find Full Text PDFJHEP Rep
January 2025
Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Background & Aims: Hepatic steatosis, characterized by lipid accumulation in hepatocytes, is a key diagnostic feature in patients with chronic hepatitis C virus (HCV) infection. This study aimed to clarify the involvement of phospholipid metabolic pathways in the pathogenesis of HCV-induced steatosis.
Methods: The expression and distribution of lipid species in the livers of human liver chimeric mice were analyzed using imaging mass spectrometry.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!