Because the function of a single crystal of potassium tantalate niobate (KTa(1-x)Nb(x)O(3), KTN) is largely decided by the trapped charge density inside it, it is essential to determine its value. We quantitatively estimate the charge density using two optical analysis methods, namely by investigating KTN's deflection angle when it is used as a deflector and by investigating KTN's focal length when it is used as a graded-index (GRIN) lens. A strobe technique is introduced with which to perform the measurement. The charge density values under different temperature conditions are shown. These results suggest that the charge density can be determined with both methods, and is constant in a specific temperature range. The charge density value is around 80 C/m(3) in our setup.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.007783DOI Listing

Publication Analysis

Top Keywords

charge density
24
trapped charge
8
investigating ktn's
8
density
6
charge
5
density analysis
4
analysis ktn
4
ktn crystal
4
crystal beam
4
beam path
4

Similar Publications

Mechanistic Understanding of the pH-Dependent Oxygen Reduction Reaction on the Fe-N-C Surface: Linking Surface Charge to Adsorbed Oxygen-Containing Species.

ACS Appl Mater Interfaces

January 2025

Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.

The Fe-N-C catalyst, featuring a single-atom Fe-N configuration, is regarded as one of the most promising catalytic materials for the oxygen reduction reaction (ORR). However, the significant activity difference under acidic and alkaline conditions of Fe-N-C remains a long-standing puzzle. In this work, using extensive ab initio molecular dynamics (AIMD) simulations, we revealed that pH conditions influence ORR activity by tuning the surface charge density of the Fe-N-C surface, rather than through the direct involvement of HO or OH ions.

View Article and Find Full Text PDF

Dynamic random access memory (DRAM) has been a cornerstone of modern computing, but it faces challenges as technology scales down, particularly due to the mismatch between reduced storage capacitance and increasing OFF current. The capacitorless 2T0C DRAM architecture is recognized for its potential to offer superior area efficiency and reduced refresh rate requirements by eliminating the traditional capacitor. The exploration of two-dimensional (2D) materials further enhances scaling possibilities, though the absence of dangling bonds complicates the deposition of high-quality dielectrics.

View Article and Find Full Text PDF

Composite coatings reinforced with varying mass fractions of SiC particles were successfully fabricated on 316 stainless steel substrates via laser cladding. The phase compositions, elemental distribution, microstructural characteristics, hardness, wear resistance and corrosion resistance of the composite coatings were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Vickers hardness testing, friction-wear testing and electrochemical methods. The coatings have no obvious pores, cracks or other defects.

View Article and Find Full Text PDF

Transition metal phosphide-based oxygen electrocatalysts for aqueous zinc-air batteries.

Chem Commun (Camb)

January 2025

Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.

Electrically rechargeable zinc-air batteries (ZABs) are emerging as promising energy storage devices in the post-lithium era, leveraging the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) at the air cathodes. Efficient bifunctional oxygen electrocatalysts, capable of catalyzing both the ORR and OER, are essential for the operation of rechargeable ZABs. Traditional Pt- and RuO/IrO-based catalysts are not ideal, as they lack sufficient bifunctional ORR and OER activity, exhibit limited long-term durability, require high overpotentials and are expensive.

View Article and Find Full Text PDF

The high responsivity and broad spectral sensitivity of organic photodetectors (OPDs) present a bright future of commercialization. However, the relatively high dark current density still limits its development. Herein, two novel nonpolar p-type conjugated small molecules, NSN and NSSN, are synthesized as interface layers to enhance the performance of the OPDs, which not only can tune energy alignments and increase the reverse charge injection barrier but also can reduce the interfacial trap density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!