Background: Epistatic Miniarray Profiles (EMAP) enable the research of genetic interaction as an important method to construct large-scale genetic interaction networks. However, a high proportion of missing values frequently poses problems in EMAP data analysis since such missing values hinder downstream analysis. While some imputation approaches have been available to EMAP data, we adopted an improved SVD modeling procedure to impute the missing values in EMAP data which has resulted in a higher accuracy rate compared with existing methods.
Results: The improved SVD imputation method adopts an effective soft-threshold to the SVD approach which has been shown to be the best model to impute genetic interaction data when compared with a number of advanced imputation methods. Imputation methods also improve the clustering results of EMAP datasets. Thus, after applying our imputation method on the EMAP dataset, more meaningful modules, known pathways and protein complexes could be detected.
Conclusion: While the phenomenon of missing data unavoidably complicates EMAP data, our results showed that we could complete the original dataset by the Soft-SVD approach to accurately recover genetic interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2014.03.032 | DOI Listing |
Sci Rep
January 2025
Department of Anesthesiology and Surgical Intensive Care Unit, Kunming Children's Hospital, Kunming, Yunnan, China.
Metabolic syndrome (Mets) in adolescents is a growing public health issue linked to obesity, hypertension, and insulin resistance, increasing risks of cardiovascular disease and mental health problems. Early detection and intervention are crucial but often hindered by complex diagnostic requirements. This study aims to develop a predictive model using NHANES data, excluding biochemical indicators, to provide a simple, cost-effective tool for large-scale, non-medical screening and early prevention of adolescent MetS.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Engineering, Université de Moncton, Moncton, NB, E1A3E9, Canada.
Diabetes is a growing health concern in developing countries, causing considerable mortality rates. While machine learning (ML) approaches have been widely used to improve early detection and treatment, several studies have shown low classification accuracies due to overfitting, underfitting, and data noise. This research employs parallel and sequential ensemble ML approaches paired with feature selection techniques to boost classification accuracy.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany.
The characteristics of data produced by omics technologies are pivotal, as they critically influence the feasibility and effectiveness of computational methods applied in downstream analyses, such as data harmonization and differential abundance analyses. Furthermore, variability in these data characteristics across datasets plays a crucial role, leading to diverging outcomes in benchmarking studies, which are essential for guiding the selection of appropriate analysis methods in all omics fields. Additionally, downstream analysis tools are often developed and applied within specific omics communities due to the presumed differences in data characteristics attributed to each omics technology.
View Article and Find Full Text PDFObjective: The objective of this research was to devise and authenticate a predictive model that employs CT radiomics and deep learning methodologies for the accurate prediction of synchronous distant metastasis (SDM) in clear cell renal cell carcinoma (ccRCC).
Methods: A total of 143 ccRCC patients were included in the training cohort, and 62 ccRCC patients were included in the validation cohort. The CT images from all patients were normalized, and the tumor regions were manually segmented via ITK-SNAP software.
Viruses
December 2024
Life Sciences, Health, and Engineering Department, The Roux Institute, Northeastern University, Portland, ME 04101, USA.
JC polyomavirus (JCPyV) establishes a persistent, asymptomatic kidney infection in most of the population. However, JCPyV can reactivate in immunocompromised individuals and cause progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease with no approved treatment. Mutations in the hypervariable non-coding control region (NCCR) of the JCPyV genome have been linked to disease outcomes and neuropathogenesis, yet few metanalyses document these associations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!