Impaired fear inhibitory properties of GABAA and μ opioid receptors of the dorsal periaqueductal grey in alcohol-withdrawn rats.

Acta Neurobiol Exp (Wars)

Laboratory of Psychobiology, Faculty of Philosophy Science and Letters, University of Sao Paulo (USP), Ribeirao Preto, SP, Brazil,

Published: April 2015

The dorsal periaqueductal grey (DPAG) is a midbrain region that plays a fundamental role on the expression of the anxiety and fear-related responses. Increased fear and anxiety levels are the most frequent symptoms present in the alcohol withdrawal syndrome. This study aims to assess whether GABA and opioid receptors of the DPAG could be implicated in the expression of the conditioned fear state elicited in alcohol withdrawn-rats. For this purpose, we used the fear-potentiated startle (FPS) procedure. Drugs used were the selective GABAA agonist muscimol (1 nmol/0.2 μL) and the predominantly mu opiate receptors agonist morphine (10 nmol/0.2 μL). Exposure to aversive cues of the elevated-plus-maze (EPM) was used in order to validate the influence of alcohol withdrawal on emotionality. Data from FPS pointed out to an anxiogenic-like profile of withdrawal, a result sustained by the data collected from the EPM test. Muscimol and morphine showed their well-known anxiolytic-like profile, decreasing the fear-potentiated startle (FPS) amplitude in control subjects. However, the drugs had no effect on the levels of fear evoked in rats pre-treated with and withdrawn from alcohol. It is suggested that this lack of effect was possibly due to the desensitization of the GABAA receptors, as well as by the decrease on the responsiveness of the functions of μ opioid receptors, resulting from chronic administration of ethyl alcohol. These findings shed light on some aspects of the anxiety-like behavior elicited during alcohol withdrawal bringing new information on the influence of GABA and opioid receptors of the DPAG on the expression of unconditioned and conditioned fear responses.

Download full-text PDF

Source
http://dx.doi.org/10.55782/ane-2014-1972DOI Listing

Publication Analysis

Top Keywords

opioid receptors
16
alcohol withdrawal
12
dorsal periaqueductal
8
periaqueductal grey
8
gaba opioid
8
receptors dpag
8
conditioned fear
8
elicited alcohol
8
fear-potentiated startle
8
startle fps
8

Similar Publications

Buprenorphine is an agonist at the mu opioid receptor (MOR) and antagonist at the kappa (KOR) and delta (DOR) receptors and a nociceptin receptor (NOR) ligand. Buprenorphine has a relatively low intrinsic efficacy for G-proteins and a long brain and MOR dwell time. Buprenorphine ceiling on respiratory depression has theoretically been related multiple factors such as low intrinsic efficacy at MOR, binding to six-transmembrane MOR and interactions in MOR/NOR heterodimers.

View Article and Find Full Text PDF

Large library docking of tangible molecules has revealed potent ligands across many targets. While make-on-demand libraries now exceed 75 billion enumerated molecules, their synthetic routes are dominated by a few reaction types, reducing diversity and inevitably leaving many interesting bioactive-like chemotypes unexplored. Here, we investigate the large-scale enumeration and targeted docking of isoquinuclidines.

View Article and Find Full Text PDF

Novel tertiary diarylethylamines as functionally selective agonists of the kappa opioid receptor.

Bioorg Med Chem Lett

January 2025

Contineum Therapeutics, 3565 General Atomics Court, Suite 200, San Diego, CA 92121, United States.

Novel kappa opioid receptor (KOR) agonists that preferentially activate G-protein signaling versus β-arrestin-2 recruitment are described. Starting from a literature-reported phenol-containing diphenethylamine KOR agonist, structure-activity relationship (SAR) studies revealed replacement of the phenol with various non-hydroxylated bicyclic heteroaromatics led to tertiary diarylethylamines which retained KOR agonist activity and improved metabolic stability in human liver microsomes. Further optimizations produced compound 39, a potent activator of G-protein signaling (GTPγS EC = 14 nM, 83 % E) that did not elicit a β-arrestin-2 recruitment functional response (E < 10 %).

View Article and Find Full Text PDF

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

Pharmacological Characterization of the Novel Selective Kappa Opioid Receptor Agonists 10-Iodo-Akuammicine and 10-Bromo-Akuammicine in Mice.

Neuropharmacology

January 2025

Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA. Electronic address:

Akuammicine (AKC), an indole alkaloid, is a kappa opioid receptor (KOR) full agonist with a moderate affinity. 10-Iodo-akuammicine (I-AKC) and 10-Bromo-akuammicine (Br-AKC) showed higher affinities for the KOR with K values of 2.4 and 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!