This paper reports on a new suppressor that can be used in the ion chromatography (IC) of inorganic cations. The space in which the electrode is set on both sides of the device is separated into three cells using anion- and cation-exchange membranes. Each of the cells is packed with either an anion- or cation-exchange resin. Anions in the eluent and injected sample are removed by electrical regeneration, based on the electrokinetic phenomenon on both the surface of the ion-exchange resins and the membranes. The electrical conductivity of the suppressed eluent reaches a level similar to that of ultrapure water; therefore, a cation detection limit of sub-ppb order is achieved in IC using the device as a suppressor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2116/analsci.30.477 | DOI Listing |
Planta
January 2025
Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic.
DbChitI-3, Drosera binata's acidic chitinase, peaks at pH 2.5 from 15 °C to 30 °C. Gene expression is stimulated by polysaccharides and suppressed by monosaccharide digestion, implying a feedback loop in its transcriptional regulation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
Cells meticulously regulate free calcium ion (Ca) concentrations, with the endoplasmic reticulum (ER) being crucial for Ca homeostasis. Disruptions in ER Ca balance can contribute to various diseases, including cancer. Although considerable research has focused on the direct mechanisms of ER Ca regulation, the role of microRNAs (miRNAs) in this process remains underexplored.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia.
Background: Juxtaglomerular (JG) cells are sensors that control blood pressure and fluid-electrolyte homeostasis. In response to a decrease in perfusion pressure or changes in the composition and/or volume of the extracellular fluid, JG cells release renin, which initiates an enzymatic cascade that culminates in the production of angiotensin II (Ang II), a potent vasoconstrictor that restores blood pressure and fluid homeostasis. In turn, Ang II exerts a negative feedback on renin release, thus preventing excess circulating renin and the development of hypertension.
View Article and Find Full Text PDFFASEB J
January 2025
School of Pharmacy, Anhui Medical University, Hefei, China.
The activation of acid-sensing ion channel 1a (ASIC1a) in response to extracellular acidification leads to an increase in extracellular calcium influx, thereby exacerbating the degeneration of articular chondrocytes in rheumatoid arthritis (RA). It has been suggested that the inhibition of extracellular calcium influx could potentially impede chondrocyte ferroptosis. The cystine transporter, solute carrier family 7 member 11 (SLC7A11), is recognized as a key regulator of ferroptosis.
View Article and Find Full Text PDFJ Biomol Struct Dyn
February 2025
Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India.
The P53 protein, a cancer-associated transcriptional factor and tumor suppressor, houses a Zn ion in its DNA-binding domain (DBD), essential for sequence-specific DNA binding. However, common mutations at position 273, specifically from Arginine to Histidine and Cysteine, lead to a loss of function as a tumor suppressor, also called DNA contact mutations. The mutant (MT) P53 structure cannot stabilize DNA due to inadequate interaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!