We examined the reliability of a certified reference material (CRM) for urea (NMIJ CRM 6006-a) as a calibrant for N, C, and H in elemental analyzers. Only the N content for this CRM is provided as an indicative value. To estimate the C and H contents of the urea CRM, we took into account the purity of the urea and the presence of other identified impurities. When we examined the use of various masses of the calibrant (0.2 to 2 mg), we unexpectedly observed low signal intensities for small masses of H and N, but these plateaued at about 2 mg. We therefore analyzed four amino acid CRMs and four food CRMs on a 2-mg scale with the urea CRM as the calibrant. For the amino acid CRMs, the differences in the analytical and theoretical contents (≤0.0026 kg/kg) were acceptable with good repeatability (≤0.0013 kg/kg in standard deviation; n = 4). For food CRMs, comparable repeatabilities to those obtained with amino acid CRMs (≤0.0025 kg/kg in standard deviation; n = 4) were obtained. The urea CRM can therefore be used as a reliable calibrant for C, H, and N in an elemental analyzer.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.30.471DOI Listing

Publication Analysis

Top Keywords

calibrant elemental
12
urea crm
12
amino acid
12
acid crms
12
reference material
8
nmij crm
8
crm 6006-a
8
reliable calibrant
8
food crms
8
kg/kg standard
8

Similar Publications

Monoelemental calibration solutions are the most common reference in elemental analysis, linking measurement results to the International System of Units (SI). National Metrology Institutes (NMI) prepare these solutions as certified reference materials (CRM) and determine their elemental mass fraction with high accuracy. Characterization with high accuracy is one of the most critical steps in CRM production.

View Article and Find Full Text PDF

Determination of alkali metal elements in solid biomass fuel by laser-induced breakdown spectroscopy: Analysis and reduction of chemical matrix effects.

Anal Chim Acta

February 2025

School of Electric Power Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, Guangzhou, Guangdong, 510641, China. Electronic address:

Background: Rapid and accurate detection of the biomass potassium (K) content in biomass is crucial for mitigating ash deposition and fouling issues in biomass fuel combustion processes. Laser-induced breakdown spectroscopy (LIBS) offers a promising approach for rapid analysis of biomass elemental. However, the accuracy of LIBS detection is susceptible to chemical matrix effects.

View Article and Find Full Text PDF

Synthesized 3,4-Diaminothieno[2,3-b]thiophene-2,5-dicarbohydrazide (DTT) Schiff base derivatives newly were synthesized by attaching with different aldehydes, deposited in thin film form by thermal evaporation technique, and characterized by UV-Visible-NIR spectroscopy, FT-IR, NMR, and elemental analysis. It is revealed that compound 4 has the highest absorption peak intensity at 586 nm. The allied absorption, dielectric, and dispersion parameters have been calculated and discussed.

View Article and Find Full Text PDF

In situ optical analytical spectroscopies offer great geochemical insights due to their capability to resolve the chemical composition of regolith surfaces of rocky celestial bodies. The use of suitable calibration targets improves the precision of mineral determination, which is of critical importance for short-living, low-mobility landers, and enables, in special cases, determination of elemental composition. We investigate the capabilities of three space-relevant optical analytical techniques used for in situ mineralogical analysis, i.

View Article and Find Full Text PDF

Winter oilseed rape (WOSR, L.) is the third largest oil crop worldwide that also provides a source of high quality plant-based proteins. Nitrogen (N) and carbon (C) play a key role in plant growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!