Copper is required for oncogenic BRAF signalling and tumorigenesis.

Nature

1] Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA [2] Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA.

Published: May 2014

The BRAF kinase is mutated, typically Val 600→Glu (V600E), to induce an active oncogenic state in a large fraction of melanomas, thyroid cancers, hairy cell leukaemias and, to a smaller extent, a wide spectrum of other cancers. BRAF(V600E) phosphorylates and activates the MEK1 and MEK2 kinases, which in turn phosphorylate and activate the ERK1 and ERK2 kinases, stimulating the mitogen-activated protein kinase (MAPK) pathway to promote cancer. Targeting MEK1/2 is proving to be an important therapeutic strategy, given that a MEK1/2 inhibitor provides a survival advantage in metastatic melanoma, an effect that is increased when administered together with a BRAF(V600E) inhibitor. We previously found that copper (Cu) influx enhances MEK1 phosphorylation of ERK1/2 through a Cu-MEK1 interaction. Here we show decreasing the levels of CTR1 (Cu transporter 1), or mutations in MEK1 that disrupt Cu binding, decreased BRAF(V600E)-driven signalling and tumorigenesis in mice and human cell settings. Conversely, a MEK1-MEK5 chimaera that phosphorylated ERK1/2 independently of Cu or an active ERK2 restored the tumour growth of murine cells lacking Ctr1. Cu chelators used in the treatment of Wilson disease decreased tumour growth of human or murine cells transformed by BRAF(V600E) or engineered to be resistant to BRAF inhibition. Taken together, these results suggest that Cu-chelation therapy could be repurposed to treat cancers containing the BRAF(V600E) mutation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138975PMC
http://dx.doi.org/10.1038/nature13180DOI Listing

Publication Analysis

Top Keywords

signalling tumorigenesis
8
cancers brafv600e
8
tumour growth
8
murine cells
8
copper required
4
required oncogenic
4
oncogenic braf
4
braf signalling
4
tumorigenesis braf
4
braf kinase
4

Similar Publications

Background: In approximately 80% of colorectal cancer cases, mutations in the adenomatous polyposis coli () gene disrupt the Wingless-related integration site (Wnt)/β-catenin signaling pathway, a crucial factor in carcinogenesis. This disruption may result in consequences such as aberrant spindle segregation and mitotic catastrophe. This study aimed to analyze the effectiveness of the ethanolic extract of red okra () pods (EEROP) in inducing apoptosis in colorectal cancer cells (SW480) by inhibiting the Wnt/β-catenin signaling pathway.

View Article and Find Full Text PDF

Introduction: Inflammasomes NLRP1 (NLR family pyrin domain containing 1) and NLRP3 are pivotal regulators of the innate immune response, activated by a spectrum of endogenous and exogenous stressors, including ultraviolet radiation (UVR). The precise molecular mechanisms underlying the activation of these inflammasomes remain unclear. Furthermore, the involvement of interleukin-33 (IL-33) in UVR-induced skin carcinogenesis is not well defined.

View Article and Find Full Text PDF

Neoadjuvant chemoradiotherapy (nCRT) is the standard treatment for locally advanced rectal cancer (LARC). Pathological complete regression is closely linked to disease outcomes. However, biomarkers predicting nCRT response and patient survival are lacking for LARC.

View Article and Find Full Text PDF

and hybrid approach to unveil triterpenoids from leaves as potential compounds for inhibiting Nrf2.

RSC Adv

January 2025

Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 80708 Taiwan.

Cancer is a leading global health concern, with over 20 million new cases and 9.7 million deaths reported in 2022. Chemotherapy remains a widely used treatment, but drug resistance, which affects up to 90% of treatment outcomes, significantly hampers its effectiveness.

View Article and Find Full Text PDF

Background: Chronic hepatitis B virus (HBV) infection is a major risk for development of hepatocellular carcinoma (HCC), a frequent malignancy with a poor survival rate. HBV infection results in significant endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) signaling, a contributing factor to carcinogenesis. As part of the UPR, the ER-associated degradation (ERAD) pathway is responsible for removing the burden of misfolded secretory proteins, to re-establish cellular homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!