Several cellular microRNAs show substantial changes in expression during HIV-1 infection and their active role in the viral life cycle is progressively emerging. In the present study, we found that HIV-1 infection of Jurkat T cells significantly induces the expression of miR-222. We show that this induction depends on HIV-1 Tat protein, which is able to increase the transcriptional activity of NFkB on miR-222 promoter. Moreover, we demonstrate that miR-222 directly targets CD4, a key receptor for HIV-1, thus reducing its expression. We propose that Tat, by inducing miR-222 expression, complements the CD4 downregulation activity exerted by other viral proteins (i.e., Nef, Vpu, and Env), and we suggest that this represents a novel mechanism through which HIV-1 efficiently represses CD4 expression in infected cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075518PMC
http://dx.doi.org/10.4161/rna.28372DOI Listing

Publication Analysis

Top Keywords

hiv-1 tat
8
tat protein
8
cd4 expression
8
hiv-1 infection
8
hiv-1
6
expression
6
mir-222
5
protein modulates
4
cd4
4
modulates cd4
4

Similar Publications

Introduction: Tat protein is a trans-activator of HIV-1 genome transcription, with additional functions including the ability to induce the chronic inflammatory process. Natural amino acid polymorphisms in Tat may affect its functional properties and the course of HIV infection. The aim of this work is to analyze the marks of Tat consensus sequences in non-A6 HIV-1 variants characteristic of the Russian Federation, as well as study natural polymorphisms in Tat CRF63_02A6 and subtype B variants circulating in Russia.

View Article and Find Full Text PDF

Development of a latency model for HIV-1 subtype C and the impact of long terminal repeat element genetic variation on latency reversal.

J Virus Erad

December 2024

HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.

Sub-Saharan Africa accounts for almost 70 % of people living with HIV (PLWH) worldwide, with the greatest numbers centred in South Africa where 98 % of infections are caused by subtype C (HIV-1C). However, HIV-1 subtype B (HIV-1B), prevalent in Europe and North America, has been the focus of most cure research and testing despite making up only 12 % of HIV-1 infections globally. Development of latency models for non-subtype B viruses is a necessary step to address this disproportionate focus.

View Article and Find Full Text PDF

People living with HIV (PLWH) experience HIV-associated neurocognitive disorders (HAND), even though combination antiretroviral therapy (cART) suppresses HIV replication. HIV-1 transactivator of transcription (HIV-1 Tat) contributes to the development of HAND through neuroinflammatory and neurotoxic mechanisms. C-C chemokine 5 receptor (CCR5) is important in immune cell targeting and is a co-receptor for HIV viral entry into CD4+ cells.

View Article and Find Full Text PDF

Despite advancements in antiretroviral therapy (ART) that reduces the viral load to undetectable levels and improve CD4 T cell counts, viral eradication has not been achieved due to HIV-1 persistence in resting CD4 T-cells. We, therefore, characterized the gene, which is essential for HIV-1 replication and pathogenesis, from 20 virologically controlled aging individuals with HIV (HIV) on long-term ART and improved CD4 T-cell counts, with a particular focus on older individuals. Peripheral blood mononuclear cell genomic DNA from HIV were used to amplify gene by polymerase chain reaction followed by nucleotide sequencing and analysis.

View Article and Find Full Text PDF

Many pathogens including viruses enter cells by endocytosis. We identified and evaluated novel endocytosis inhibitors capable of blocking the entry of the HIV-1 Transactivation of Transcription protein (Tat) protein into neuronal cells and investigated their potential protective properties against Tat-induced neurotoxicity. In this study, the compounds Les-6631 and Les-6633 were synthesized and assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!