A xanthone-derived natural product, α-mangostin is isolated from various parts of the mangosteen, Garcinia mangostana L. (Clusiaceae), a well-known tropical fruit. Novel xanthone derivatives based on α-mangostin were synthesized and evaluated as anti-cancer agents by cytotoxicity activity screening using 5 human cancer cell lines. Some of these analogs had potent to moderate inhibitory activities. The structure-activity relationship studies revealed that phenol groups on C3 and C6 are critical to anti-proliferative activity and C4 modification is capable to improve both anti-cancer activity and drug-like properties. Our findings provide new possibilities for further explorations to improve potency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2014.03.047DOI Listing

Publication Analysis

Top Keywords

xanthone derivatives
8
derivatives based
8
based α-mangostin
8
anti-cancer agents
8
synthesis xanthone
4
α-mangostin biological
4
biological evaluation
4
evaluation anti-cancer
4
agents xanthone-derived
4
xanthone-derived natural
4

Similar Publications

Can α-Mangostin and Photodynamic Therapy Support Ciprofloxacin in the Inactivation of Uropathogenic and Strains?

Int J Mol Sci

December 2024

Department of Biology and Medical Parasitology, Faculty of Medicine, Wrocław Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland.

Multidrug-resistant bacteria represent a significant challenge in the treatment of bacterial infections, often leading to therapeutic failures. This issue underlines the need to develop strategies that improve the efficacy of conventional antibiotic therapies. In this study, we aimed to assess whether a plant-derived compound, α-mangostin, and photodynamic therapy (PDT) could enhance the antibacterial activity of ciprofloxacin against uropathogenic strains of and .

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) and cancer are significant contributors to morbidity and mortality worldwide. Recent studies have increasingly highlighted the potential of phytochemicals found in plants and plant-based foods for preventing and treating these chronic diseases. Mexico's agrobiodiversity provides a valuable resource for phytochemistry.

View Article and Find Full Text PDF

Novel α-mangostin derivatives as promising antiviral agents: Isolation, synthesis, and evaluation against chikungunya virus.

Eur J Med Chem

December 2024

Department of Natural Products and Medicinal Chemistry, CSIR-IICT Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:

Investigations into fruit and vegetable processing residues (FVPRs) offer huge opportunities to discover novel therapeutics against many diseases. In this study, detailed investigation of Garcinia mangostana fruit peel extract led to the isolation and identification of ten known compounds (1-10). Further, a new series of α-mangostin derived sulphonyl piperzines, aryl alkynes and 1,2,3-triazole derivatives were synthesized using Huisgen 1,3-dipolar cyclo-addition reaction ("click" chemistry).

View Article and Find Full Text PDF

Bacteria biofilm infection seriously challenges clinical drug therapy. Nitric oxide (NO) was reported to disperse biofilm, eliminate bacteria resistance and kill bacteria. In this study, on the basis of membrane targeting of α-mangostin (α-MG) and the dispersion effect of NO on bacteria biofilms, we designed and synthesized 30 NO donors that α-MG was conjugated with a nitrobenzene or a nitrate and other four representative reference derivatives.

View Article and Find Full Text PDF

Three new xanthones and other anti-inflammatory components from the aerial parts of Hypericum beanii.

Arch Pharm Res

December 2024

School of Pharmacy, Anhui Medical University, No.81 Meishan Road Shushan District, Hefei, 230032, Anhui, China.

Hypericum beanii, a traditional folk medicine plant, has been employed in treating various inflammation-related diseases. In this study, three new prenylated xanthones, named beanigenin A (1), beanigenin B (2), and beanigenin C (3), along with twenty-five known compounds (4-28), were isolated from the aerial parts of H. beanii.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!