The skin of many amphibians produces a large repertoire of antimicrobial peptides that are crucial in the first line of defense against microbial invasion. Despite the immense richness of wild amphibians in Argentina, knowledge about peptides with antimicrobial properties is limited to a few species. Here we used LC-MS-MS to analyze samples of Hypsiboas pulchellus skin with the aim to identify antimicrobial peptides in the mass range of 1000 to 2000 Da. Twenty-three novel sequences were identified by MS, three of which were selected for chemical synthesis and further studies. The three synthetic peptides, named P1-Hp-1971, P2-Hp-1935, and P3-Hp-1891, inhibited the growth of two ATCC strains: Escherichia coli (MIC: 16, 33, and 17 μM, respectively) and Staphylococcus aureus (MIC: 8, 66, and 17 μM, respectively). P1-Hp-1971 and P3-Hp-1891 were the most active peptides. P1-Hp-1971, which showed the highest therapeutic indices (40 for E. coli and 80 for S. aureus), is a proline-glycine-rich peptide with a highly unordered structure, while P3-Hp-1891 adopts an amphipathic α-helical structure in the presence of 2,2,2-trifluoroethanol and anionic liposomes. This is the first peptidomic study of Hypsiboas pulchellus skin secretions to allow the identification of antimicrobial peptides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/np4009317 | DOI Listing |
Immunogenetics
January 2025
School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
Characterising functional diversity is a vital element to understanding a species' immune function, yet many immunogenetic studies in non-model organisms tend to focus on only one or two gene families such as the major histocompatibility complex (MHC) or toll-like receptors (TLR). Another interesting component of the eukaryotic innate immune system is the antimicrobial peptides (AMPs). The two major groups of mammalian AMPs are cathelicidins and defensins, with the former having undergone species-specific expansions in marsupials.
View Article and Find Full Text PDFEquine Vet J
January 2025
University of Liverpool, Institute of Life Course and Medical Sciences, William Henry Duncan Building, Liverpool, UK.
Background: Equine dental diseases significantly impact a horse's overall health, performance and quality of life. They can result in secondary infections and digestive disturbances, potentially leading to colic. A recently described disease affecting the incisors of horses is equine odontoclastic tooth resorption and hypercementosis (EOTRH).
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States. Electronic address:
The formation of functional bacterial amyloids by phenol-soluble modulins (PSMs) in Staphylococcus aureus is a critical component of biofilm-associated infections, providing robust protective barriers against antimicrobial agents and immune defenses. Clarifying the molecular mechanisms of PSM self-assembly within the biofilm matrix is essential for developing strategies to disrupt biofilm integrity and combat biofilm-related infections. In this study, we analyzed the self-assembly dynamics of PSM-β1 and PSM-β2 by examining their folding and dimerization through long-timescale atomistic discrete molecular dynamics simulations.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
Department of Virology, Pasteur Institute of Iran, Tehran, 13169-43551, Iran.
This review delves into the potential of antimicrobial peptides (AMPs) as promising candidates for combating arboviruses, focusing on their mechanisms of antiviral activity, challenges, and future directions. AMPs have shown promise in preventing arbovirus attachment to host cells, inducing interferon production, and targeting multiple viral stages, illustrating their multifaceted impact on arbovirus infections. Structural elucidation of AMP-viral complexes is explored to deepen the understanding of molecular determinants governing viral neutralization, paving the way for structure-guided design.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
Introduction: Atopic dermatitis (AD) is a chronic inflammatory disease characterized by increased skin sensitivity to environmental elements, mediated by CD4 T helper cells (Th2). Interleukin-33 (IL-33) plays a critical role in exacerbating symptoms in inflamed tissues. Conversely, vitamin D has been shown to induce antimicrobial peptides and suppress the inflammatory response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!