Intelligence tests are commonly administered to children following moderate-to-severe traumatic brain injury (TBI). The Reynolds Intellectual Assessment Scales (RIAS) is a recently developed measure of intellectual ability that has a number of appealing features for assessing individuals with brain damage, but as yet has little validity information when applied to children with TBI or other forms of brain injury. It is therefore unclear whether RIAS scores are sensitive to brain injury and how they compare to older more well-established tests such as the Wechsler scales. The current article reports two studies that examine these matters in youth with TBI. The first study examined sensitivity of the RIAS to TBI in 110 children. Results indicated the TBI sample performed significantly worse compared with the standardization sample on all RIAS index scores. The second study included 102 children who were administered either the RIAS, Wechsler Intelligence Scale for Children-Third Edition (WISC-III), or WISC-Fourth Edition (WISC-IV; 34 children in each group). Comparisons among the RIAS, WISC-III, and WISC-IV groups indicated no significant differences among the measures on verbal, nonverbal, and Composite Index/Full-Scale IQs. Results provide support for the sensitivity of the RIAS to TBI in children and also suggest that IQs produced by the RIAS, WISC-III, and WISC-IV do not significantly vary from one test to the other, which is particularly true of the verbal and Composite Index/Full-Scale IQs.

Download full-text PDF

Source
http://dx.doi.org/10.1080/21622965.2012.700531DOI Listing

Publication Analysis

Top Keywords

brain injury
16
wisc-iii wisc-iv
12
traumatic brain
8
rias
8
rias scores
8
sensitivity rias
8
rias tbi
8
rias wisc-iii
8
composite index/full-scale
8
index/full-scale iqs
8

Similar Publications

Purpose: To examine associations between clinical measures (self-reported and clinician-administered) and subsequent injury rates in the year after concussion return to play (RTP) among adolescent athletes.

Methods: We performed a prospective, longitudinal study of adolescents ages 13-18 years. Each participant was initially assessed within 21 days of concussion and again within 5 days of receiving RTP clearance from their physician.

View Article and Find Full Text PDF

Neutrophil Extracellular Traps Induce Brain Edema Around Intracerebral Hematoma via ERK-Mediated Regulation of MMP9 and AQP4.

Transl Stroke Res

December 2024

Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China.

Perihematomal edema (PHE) significantly aggravates secondary brain injury in patients with intracerebral hemorrhage (ICH), yet its detailed mechanisms remain elusive. Neutrophil extracellular traps (NETs) are known to exacerbate neurological deficits and worsen outcomes after stroke. This study explores the potential role of NETs in the pathogenesis of brain edema following ICH.

View Article and Find Full Text PDF

Resolvin D1 (RvD1) is an endogenous anti-inflammatory mediator that modulates the inflammatory response and promotes inflammation resolution. RvD1 has demonstrated neuroprotective effects in various central nervous system contexts; however, its role in the pathophysiological processes of intracerebral hemorrhage (ICH) and the potential protective mechanisms when combined with exercise rehabilitation remain unclear. A mouse model of ICH was established using collagenase, and treatment with RvD1 combined with three weeks of exercise rehabilitation significantly improved neurological deficits, muscle strength, learning, and memory in ICH mice while reducing anxiety-like behavior.

View Article and Find Full Text PDF

Heart transplantation remains the ultimate treatment strategy for neonates and children with medically refractory end-stage heart failure and utilization of donors after circulatory death (DCD) can expand th donor pool. We have previously shown that mitochondrial transplantation preserves myocardial function and viability in neonatal swine DCD hearts to levels similar to that observed in donation after brain death (DBD). Herein, we sought to investigate the transcriptomic and proteomic pathways implicated in these phenotypic changes using ex situ perfused swine hearts.

View Article and Find Full Text PDF

Molecular biomarkers associated with TBI outcome in individuals of Black racial identity or African ancestry: a narrative review.

World Neurosurg

December 2024

College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York, USA; Global Neurosurgery Laboratory, SUNY Downstate Health Sciences University, Brooklyn, New York, USA; Department of Neurology, One Brooklyn Health/Brookdale University Hospital and Medical Center, Brooklyn, New York, USA; Department of Neurology; SUNY Downstate Health Sciences University, Brooklyn, New York, USA; Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, New York, USA; Division of Neurosurgery, Department of Surgery, SUNY Downstate Health Sciences University, Brooklyn, New York, USA; Department of Community Health Sciences, School of Public Health, SUNY Downstate Health Sciences University; Department of Surgery, One Brooklyn Health/Brookdale University Hospital and Medical Center, Brooklyn, New York, USA. Electronic address:

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide and a major global health concern. In the United States (US), individuals of Black or African American racial identity experience disproportionately higher rates of TBI and suffer from worse post-injury outcomes. Contemporary research agendas have largely overlooked or excluded Black populations, resulting in the continued marginalization of Black patient populations in TBI studies, thereby limiting the generalizability of ongoing research to patients in the US and around the world.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!