Camptothecin-Loaded Liposomes with α-Melanocyte-Stimulating Hormone Enhance Cytotoxicity Toward and Cellular Uptake by Melanomas: An Application of Nanomedicine on Natural Product.

J Tradit Complement Med

Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan. ; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan. ; Department of Cosmetic Science, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.

Published: April 2013

AI Article Synopsis

  • Developed α-MSH-targeted liposomes encapsulating camptothecin for targeted melanoma therapy, consisting of phosphatidylcholine, cholesterol, and stearylamine.
  • Liposomes had an average size of 250 nm with a zeta potential of 60 mV, achieving a 95% encapsulation efficiency and sustaining controlled drug release.
  • Targeted α-MSH liposomes significantly reduced melanoma cell viability to 18%, highlighting their enhanced cytotoxic effect compared to non-targeted liposomes and free camptothecin.

Article Abstract

In this study, we attempted to develop functional liposomes loaded with camptothecin and attached to α-melanocyte-stimulating hormone (α-MSH) to target melanoma cells. The liposomes were mainly composed of phosphatidylcholine, cholesterol, and stearylamine, and were characterized by the vesicle size, zeta potential, camptothecin encapsulation efficiency, and release behavior. Results revealed that α-MSH liposomes possessed an average size of approximately 250 nm with a surface charge of 60 mV. Camptothecin was successfully entrapped by the targeted liposomes with an encapsulation percentage of nearly 95%. The liposomes provided sustained and controlled camptothecin release. Non-targeted liposomes with the drug exerted superior cytotoxicity against melanomas compared to the free control. Cell viability was reduced from 48% to 32% compared to conventional liposomes. Peptide ligand conjugation further promoted cytotoxicity to 18% viability, which was a 2.7-fold decrease versus the free control. According to the images of fluorescence microscopy, α-MSH liposomes exhibited greater cell endocytosis than did non-targeted liposomes and the free control. α-MSH liposomes were predominantly internalized in the cytoplasm. These findings demonstrate that α-MSH liposomes could enhance the anti-melanoma activity of camptothecin owing to their targeting ability and controlled drug delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3924967PMC
http://dx.doi.org/10.4103/2225-4110.110423DOI Listing

Publication Analysis

Top Keywords

α-msh liposomes
16
free control
12
liposomes
11
α-melanocyte-stimulating hormone
8
non-targeted liposomes
8
camptothecin
5
α-msh
5
camptothecin-loaded liposomes
4
liposomes α-melanocyte-stimulating
4
hormone enhance
4

Similar Publications

Background: Most patients with prostate cancer inevitably progress to castration-resistant prostate cancer (CRPC), at which stage chemotherapeutics like docetaxel become the first-line treatment. However, chemotherapy resistance typically develops after an initial period of therapeutic efficacy. Increasing evidence indicates that cancer stem cells confer chemotherapy resistance via exosomes.

View Article and Find Full Text PDF

Fluorescence Anisotropy for Monitoring cis- and trans-Membrane Interactions of Synaptotagmin-1.

Methods Mol Biol

January 2025

Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.

Vesicle fusion induces neurotransmitter release, orchestrated by synaptotagmin-1 (Syt-1) as a Ca sensor. However, the precise molecular mechanisms of Syt-1 remain controversial, with various and competing models proposed based on different ionic strengths. Syt-1, residing on the vesicle membrane alongside anionic phospholipids such as phosphatidylserine (PS), undergoes Ca-induced binding to its own vesicle membrane, known as the cis-interaction, which prevents the trans-interaction of Syt-1 with the plasma membrane.

View Article and Find Full Text PDF

Ligustilide, a phthalide compound extracted from Umbelliferae plants such as Angelica sinensis and Ligusticum chuanxiong, has been proven to possess various pharmacological activities, such as anti-inflammatory, anti-tumor, anti-atherosclerosis, anti-ischemic stroke injury, and anti-Alzheimer's disease properties. In recent years, it has shown great potential, particularly in the treatment of locomotor system diseases. Studies have shown that ligustilide has significant therapeutic effects on various locomotor system diseases, including osteoporosis, osteoarthritis, femoral head necrosis, osteosarcoma, and muscle aging and injury.

View Article and Find Full Text PDF

[Research progress in acupoint administration of new dosage forms of traditional Chinese medicine preparations for rheumatoid arthritis].

Zhongguo Zhong Yao Za Zhi

December 2024

College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine Guiyang 550025, China National Engineering Technology Research Center for Miao Medicine Guiyang 550025, China Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine Guiyang 550025, China.

The conventional acupoint therapy for rheumatoid arthritis often uses traditional Chinese medicine preparations in the dosage forms of powder, ointment, and paste. However, these dosage forms have obvious drawbacks, such as low transdermal absorption, strong skin irritation, and easy detachment. Creating a traditional Chinese medicine acupoint therapy characterized by high penetration, low toxicity, low irritation, and convenient administration is of great significance.

View Article and Find Full Text PDF

Promotion of Triple Negative Breast Cancer Immunotherapy by Combining Bioactive Radicals with Immune Checkpoint Blockade.

Acta Biomater

January 2025

Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China, 610041. Electronic address:

Although immunotherapy has revolutionized clinical cancer treatment, the efficacy is limited due to the lack of tumor-associated antigens (TAAs) and the presence of compensatory immune checkpoints. To overcome the deficiency, a nano-system loaded with ozone and CD47 inhibitor RRx-001 is designed and synthesized. Upon irradiation, reactive oxygen species (ROS) generated from ozone reacts with nitric oxide (NO) metabolized from RRx-001 to form reactive nitrogen species (RNS), which presents a much stronger cell-killing ability than ROS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!