Rabbit gall-bladder epithelial cells were isolated by a combination of Ca2+ omission, enzymatic treatment, and mechanical detachment and had a viability of 96-98% and well preserved morphology. Measurements of cytosolic free Ca2+ concentration ([Ca2+]i) in these cells with the Ca2+-fluorescent indicator fura-2 demonstrated a resting [Ca2+]i level of 115 +/- 12 nM. When used in concentrations which inhibit rabbit gall-bladder isosmotic NaCl absorption (1-100 microM), the Ca2+-channel activator BAY K 8644 caused a dose-dependent increase in the epithelial [Ca2+]i to a maximal value of 850 nM. The effect was dependent on extracellular Ca2+, and was not altered by 1 microM L-verapamil. Depolarization of the epithelial cells with KCl had no effect on [Ca2+]i. The results suggest that BAY K 8644 activates a Ca2+ influx which is not dependent on voltage-gated channels. Cytosolic Ca2+ may be involved in the regulation of isosmotic NaCl absorption in the mammalian gall-bladder.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0143-4160(89)90042-0 | DOI Listing |
Chem Biol Interact
January 2025
Department of Biological Chemistry, Regional University of Cariri, 63105-000, Crato, CE, Brazil.
Microvasc Res
January 2025
Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India. Electronic address:
Dehydroepiandrosterone (DHEA) is known for potent cardioprotective properties and diminished DHEA level in plasma is often associated with hypertension and age-related anomalies. However, putative ex-vivo vasorelaxation potential of DHEA in systemic resistance vessels like mesenteric arteries and conduit arteries like aorta are still to be worked out. The study aimed to explore vasorelaxation potential of DHEA in superior and resistance mesenteric arteries and aorta in rats and to determine the contribution L-type Voltage dependent calcium channel (L-VDCC) in the relaxation response in these arterial tissues.
View Article and Find Full Text PDFFront Physiol
September 2024
Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States.
Cardiac action potential (AP) alternans have been linked to the development of arrhythmia. AP alternans may be driven by AP instabilities, Ca transient (CaT) instabilities, or both. The mechanisms underlying CaT driven AP alternans is well-supported experimentally, but the ionic mechanism underlying alternans driven by AP instabilities remain incompletely understood.
View Article and Find Full Text PDFFront Neural Circuits
September 2024
School of Medicine, Dali University, Dali, China.
The L-type Ca channel (LTCC, also known as Cav1,2) is involved in the regulation of key neuronal functions, such as dendritic information integration, cell survival, and neuronal gene expression. Clinical studies have shown an association between L-type calcium channels and the onset of depression, although the precise mechanisms remain unclear. The development of depression results from a combination of environmental and genetic factors.
View Article and Find Full Text PDFCNS Neurosci Ther
August 2024
Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Aims: To explore the role of voltage-gated calcium channels (VGCC) in 5-HT receptor agonist 2,5-dimethoxy-4-iodophenyl-2-aminopropane hydrochloride's improvement of spinal cord injury (SCI) induced detrusor sphincter dyssynergia and the expressions of the 5-hydroxy tryptamine (5-HT) 2A receptors and VGCCs in lumbosacral cord after SCI.
Methods: Female Sprague-Dawley rats were randomized into normal control group and SCI group (N = 15 each). Cystometrogram (CMG), simultaneous CMG, and external urethral sphincter electromyography (EUS-EMG) were conducted in all groups under urethane anesthesia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!