A child-customized magnetoencephalography system was used to investigate somatosensory evoked field (SEF) in 3- to 4-year-old children. Three stimulus conditions were used in which the children received tactile-only stimulation to their left index finger or visuotactile stimulation. In the two visuotactile conditions, the children received tactile stimulation to their finger while they watched a video of tactile stimulation applied either to someone else's finger (the finger-touch condition) or to someone else's toe (the toe-touch condition). The latencies and source strengths of equivalent current dipoles (ECDs) over contralateral (right) somatosensory cortex were analyzed. In the preschoolers who provided valid ECDs, the stimulus conditions induced an early-latency ECD occurring between 60 and 68 ms mainly with an anterior direction. We further identified a middle-latency ECD between 97 and 104 ms, which predominantly had a posterior direction. Finally, initial evidence was found for a late-latency ECD at about 139-151 ms again more often with an anterior direction. Differences were found in the source strengths of the middle-latency ECDs among the stimulus conditions. For the paired comparisons that could be formed, ECD source strength was more pronounced in the finger-touch condition than in the tactile-only and the toe-touch conditions. Although more research is necessary to expand the data set, this suggests that visual information modulated preschool SEF. The finding that ECD source strength was higher when seen and felt touch occurred to the same body part, as compared to a different body part, might further indicate that connectivity between visual and tactile information is indexed in preschool somatosensory cortical activity, already in a somatotopic way.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970025PMC
http://dx.doi.org/10.3389/fnhum.2014.00170DOI Listing

Publication Analysis

Top Keywords

stimulus conditions
12
somatosensory evoked
8
evoked field
8
visuotactile stimulation
8
4-year-old children
8
conditions children
8
children received
8
tactile stimulation
8
finger-touch condition
8
source strengths
8

Similar Publications

Retinoids and retinoid-binding proteins: Unexpected roles in metabolic disease.

Curr Top Dev Biol

January 2025

Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, United States.

Alterations in tissue expression levels of both retinol-binding protein 2 (RBP2) and retinol-binding protein 4 (RBP4) have been associated with metabolic disease, specifically with obesity, glucose intolerance and hepatic steatosis. Our laboratories have shown that this involves novel pathways not previously considered as possible linkages between impaired retinoid metabolism and metabolic disease development. We have established both biochemically and structurally that RBP2 binds with very high affinity to very long-chain unsaturated 2-monoacylglycerols like the canonical endocannabinoid 2-arachidonoyl glycerol (2-AG) and other endocannabinoid-like substances.

View Article and Find Full Text PDF

Novel multipotent conjugate bearing tacrine and donepezil motifs with dual cholinergic inhibition and neuroprotective properties targeting Alzheimer's disease.

RSC Med Chem

January 2025

Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia

In this work, we developed potential multifunctional agents to combat Alzheimer's disease. According to our strategy, fragments of tacrine and donepezil were merged in a unique hybrid structure. After successfully synthesizing the compounds, they were evaluated for their dual AChE/BuChE inhibitor potential and neuroprotector response using a glutamate-induced excitotoxicity model.

View Article and Find Full Text PDF

Metabolic Reprogramming of Neutrophils in the Tumor Microenvironment: Emerging Therapeutic Targets.

Cancer Lett

January 2025

Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China. Electronic address:

Neutrophils are pivotal in the immune system and have been recognized as significant contributors to cancer development and progression. These cells undergo metabolic reprogramming in response to various stimulus, including infections, diseases, and the tumor microenvironment (TME). Under normal conditions, neutrophils primarily rely on aerobic glucose metabolism for energy production.

View Article and Find Full Text PDF

Supporting rotational grazing systems with virtual fencing: paddock transitions, beef heifer performance, and stress response.

Animal

December 2024

Department of Crop Sciences, Grassland Science, Georg-August-University Göttingen, Von-Siebold-Strasse 8, 37075 Göttingen, Germany; Centre for Biodiversity and Sustainable Land Use, Büsgenweg 1, 37075 Göttingen, Germany.

Animal welfare is integral to sustainable livestock production, and pasture access for cattle is known to enhance welfare. Despite positive welfare impacts, high labour requirements hinder the adoption of sustainable grazing practices such as rotational stocking management. Virtual fencing (VF) is an innovative technology for simplified, less laborious grazing management and remote animal monitoring, potentially facilitating the expansion of sustainable livestock production.

View Article and Find Full Text PDF

Hyperpolarized-C magnetic resonance imaging (HP-C MRI) was used to image changes in C-lactate signal during a visual stimulus condition in comparison to an eyes-closed control condition. Whole-brain C-pyruvate, C-lactate and C-bicarbonate production was imaged in healthy volunteers (N = 6, ages 24-33) for the two conditions using two separate hyperpolarized C-pyruvate injections. BOLD-fMRI scans were used to delineate regions of functional activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!