In Xenopus laevis, sperm-egg interaction promotes partial proteolysis and/or tyrosine phosphorylation of uroplakin III (UPIII) and the tyrosine kinase Src, which both localize to the cholesterol-enriched egg membrane microdomains (MDs). Here we show that sperm promote proteolysis and/or tyrosine phosphorylation of UPIII and Src in MDs isolated from ovulated and unfertilized eggs (UF-MDs). An antibody against the extracellular domain of UPIII interferes with these events. Inhibition of fertilization by anti-UPIII antibody is rescued by co-incubation with UF-MDs. This suggests that, like MDs in intact eggs, the isolated UF-MDs are capable of interacting with sperm, an interaction that does not interfere with normal fertilization but rather augments the ability of sperm to fertilize eggs pretreated with anti-UPIII antibody. This unexpected effect of UF-MDs on sperm requires UPIII function in UF-MDs and protein kinase activity in sperm. MDs isolated from progesterone-treated mature oocytes, but not ovarian immature oocytes, are similarly functional as UF-MDs. The anti-UPIII extracellular domain antibody binds more effectively to the surface of mature than immature ovarian oocytes. We propose that the structural and functional competency of the UPIII-Src signaling system in MDs is strictly regulated during oocyte maturation and subsequently in sperm-mediated egg activation and fertilization. The fertilization-related signaling properties seen in UF-MDs can be partially reconstituted in MDs of human embryonic kidney 293 cells (293-MDs) expressing UPIII, Src and uroplakin Ib. However, 293-MDs expressing a proteolysis-resistant mutant of UPIII are less functional, suggesting that the availability of UPIII to protease action is important for MD function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.105510 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!