Metal-metal singly-bonded diruthenium complexes, bridged by naphthyridine-functionalized N-heterocyclic carbene (NHC) ligands featuring a hydroxy appendage on the naphthyridine unit, are obtained in a single-pot reaction of [Ru2(CH3COO)2(CO)4] with 1-benzyl-3-(5,7-dimethyl-1,8-naphthyrid-2-yl)imidazolium bromide (BIN⋅HBr) or 1-isopropyl-3-(5,7-dimethyl-1,8-naphthyrid-2-yl)imidazolium bromide (PIN⋅HBr), TlBF4, and substituted benzaldehyde containing an electron-withdrawing group. The modified NHC-naphthyridine-hydroxy ligand spans the diruthenium unit in which the NHC carbon and hydroxy oxygen occupy the axial sites. All the synthesized compounds catalyze acceptorless dehydrogenation of alcohols to the corresponding aldehydes in the presence of a catalytic amount of weak base 1,4-diazabicyclo[2.2.2]octane (DABCO). Further, acceptorless dehydrogenative coupling (ADHC) of the alcohol with amines affords the corresponding imine as the sole product. The substrate scope is examined with 1 (BIN, p-nitrobenzaldehyde). A similar complex [Ru2(CO)4(CH3COO)(3-PhBIN)][Br], that is devoid of a hydroxy arm, is significantly less effective for the same reaction. Neutral complex 1 a, obtained by deprotonation of the hydroxy arm in 1, is found to be active for the ADHC of alcohols and amines under base-free conditions. A combination of control experiments, deuterium labeling, kinetic Hammett studies, and DFT calculations support metal-hydroxyl/hydroxide and metal-metal cooperation for alcohol activation and dehydrogenation. The bridging acetate plays a crucial role in allowing β-hydride elimination to occur. The ligand architecture on the diruthenium core causes rapid aldehyde extrusion from the metal coordination sphere, which is responsible for exclusive imine formation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201304403DOI Listing

Publication Analysis

Top Keywords

imine formation
8
acceptorless dehydrogenative
8
dehydrogenative coupling
8
alcohols amines
8
hydroxy arm
8
metal-ligand cooperation
4
diruthenium
4
cooperation diruthenium
4
diruthenium platform
4
platform selective
4

Similar Publications

Synthesis of Imine-Phenoxy Ligated Palladium Complexes for Norbornene Homopolymerization.

Inorg Chem

December 2024

Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.

Metal complexes with tunable ligands play a crucial role in olefin polymerization and impart control over molecular weight, crystallinity, and stereoregularity. We report the single-step synthesis of imine-phenoxy ligands in excellent yields (81-93%). The identity of electronically tuned imine-phenoxy ligands was unambiguously ascertained by using a combination of spectroscopic and analytical methods.

View Article and Find Full Text PDF

Biomaterials with antimicrobial and muco-adhesive properties represent an efficient system for different applications. In this paper, a new biomaterial based on chitosan-camphor beads and their crosslinked form with glutaraldehyde was optimized. Low and high molecular weight chitosan were considered.

View Article and Find Full Text PDF

Regulating Zn Deposition via Honeycomb-like Covalent Organic Frameworks for Stable Zn Metal Anodes.

ACS Appl Mater Interfaces

December 2024

Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.

The irreversible chemistry of the Zn anode, attributed to parasitic reactions and the growth of zinc dendrites, is the bottleneck in the commercialization of aqueous zinc-ion batteries. Herein, an efficient strategy via constructing an organic protective layer configured with a honeycomb-like globular-covalent organic framework (G-COF) was constructed to enhance the interfacial stability of Zn anodes. Theoretical analyses disclose that the methoxy and imine groups in G-COF have more negative adsorption energy and electrostatic potential distribution, favorable Zn adsorption, and diffusion.

View Article and Find Full Text PDF

Diabetic wound healing is hampered due to oxidative stress, exacerbated inflammation, and impaired angiogenesis in the wounds. A pH-sensitive antioxidant hydrogel based on carboxymethyl chitosan (CMCS), oligoprocyanidins (OPC), and oxide dextran (Oxd) is prepared to accelerate diabetic wound healing. The hydrogel network is formed via imine and hydrogen bonding interactions in the presence of hydroxyl, amino, and aldehyde groups, and deferoxamine (DFO) is incorporated into the hydrogel.

View Article and Find Full Text PDF

The supramolecular resorcinarene hexameric capsule efficiently promotes the unprecedented reaction between isocyanides and electron-deficient aromatic aldehydes leading to the formation of imines and carbon monoxide. The mechanism of the reaction was investigated via isotope labelling, kinetic analysis of the reaction, computational studies and the independent synthesis of a proposed intermediate. Control experiments indicate that the formation of the key aziridinone intermediate is limited to the cavity of the capsule.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!