We tested the camouflage hypothesis, or the linkage between animal (Saharan rodent) and habitat coloration, on the largest geographical scale yet conducted. We aimed to determine whether phenotypic variation is explained by micro-habitat variation and/or genetic polymorphism to determine 1) the strength of linkage between fur color and local substrate color, and 2) the divergence in fur coloration between two genetic clades, representing cryptic species, throughout the complete range of the African desert jerboas (Jaculus jaculus). We used a combination of museum and field-collected specimens, remote sensing tools, satellite and digital photography and molecular genetic and phylogenetic methods to investigate the above hypotheses. Along with showing that the two divergent genetic clades of jerboas occur sympatrically throughout their African distribution, we showed significant covariation between dorsal fur coloration of the animals and the color of their habitat. We also described significant phenotypic divergence in fur color, consistent with genetic divergence between the sympatric clades. The linkage between environment and phenotype supports the idea that the selection promoting cryptic coloration is persistent in contemporary populations of jerboas, however the phenotypic divergence indicates that it has different strengths (or optima) in the two clades. The mosaic distribution of micro-habitats occupied by geographically sympatric clades suggests that it may influence both ecological and evolutionary dynamics between these two cryptic species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979769 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0094342 | PLOS |
J Med Virol
January 2025
Department of Morphology and Genetics, Federal University of São Paulo, São Paulo-SP, Brazil.
We identified seven distinct coronaviruses (CoVs) in bats from Brazil, classified into 229E-related (Alpha-CoV), Nobecovirus, Sarbecovirus, and Merbecovirus (Beta-CoV), including one closely related to MERS-like CoV with 82.8% genome coverage. To accomplish this, we screened 423 oral and rectal swabs from 16 different bat species using molecular assays, RNA sequencing, and evolutionary analysis.
View Article and Find Full Text PDFPeerJ
January 2025
Marine Biology Unit, Department of Biology, Ghent University, Ghent, Belgium.
Animals can use specific environmental cues to make informed decisions about whether and where to disperse. Patch conditions are known to affect the dispersal behavior of animals, but empirical studies investigating the impact of resource diversity on the dispersal of closely related species are largely lacking. In this study, we investigated how food diversity affects the dispersal behavior of three co-occurring cryptic species of the marine bacterivorous nematode complex (Pm I, Pm III and Pm IV).
View Article and Find Full Text PDFJ Phycol
January 2025
Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil.
The filamentous red algal genus Bryocladia was recently deeply revised based on molecular and morphological data. However, data from the Southwestern Atlantic Ocean are scarce. Here, we provide a phylogenetic study of Bryocladia representatives from the Brazilian coast with new additions to the genus.
View Article and Find Full Text PDFPlant Divers
November 2024
CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China.
The Indo-Burma Biodiversity Hotspot is renowned for its rich biodiversity, including that of vascular plants. However, the fern diversity and its endemism in this hotspot have not been well understood and so far, the diversity of very few groups of ferns in this region has been explored using combined molecular and morphological approaches. Here, we updated the plastid phylogeny of the Java fern genus with 226 (115% increase of the latest sampling) samples across the distribution range, specifically those of three phylogenetically significant species, , .
View Article and Find Full Text PDFIntegr Zool
January 2025
State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China.
The genus Hylomys now comprises seven species instead of two; the Hylomys species in China should be classified as Hylomys peguensis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!